Cargando…

Assessing the current and potential future distribution of four invasive forest plants in Minnesota, U.S.A., using mixed sources of data

Invasive plants are an ongoing subject of interest in North American forests, owing to their impacts on forest structure and regeneration, biodiversity, and ecosystem services. An important component of studying and managing forest invaders involves knowing where the species are, or could be, geogra...

Descripción completa

Detalles Bibliográficos
Autores principales: Reinhardt, Jason R., Russell, Matthew B., Senay, Senait, Lazarus, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392769/
https://www.ncbi.nlm.nih.gov/pubmed/32728063
http://dx.doi.org/10.1038/s41598-020-69539-1
Descripción
Sumario:Invasive plants are an ongoing subject of interest in North American forests, owing to their impacts on forest structure and regeneration, biodiversity, and ecosystem services. An important component of studying and managing forest invaders involves knowing where the species are, or could be, geographically located. Temporal and environmental context, in conjunction with spatially-explicit species occurrence information, can be used to address this need. Here, we predict the potential current and future distributions of four forest plant invaders in Minnesota: common buckthorn (Rhamnus cathartica), glossy buckthorn (Frangula alnus), garlic mustard (Alliaria petiolata), and multiflora rose (Rosa multiflora). We assessed the impact of two different climate change scenarios (IPCC RCP 6.0 and 8.5) at two future timepoints (2050s and 2070s) as well as the importance of occurrence data sources on the potential distribution of each species. Our results suggest that climate change scenarios considered here could result in a potential loss of suitable habitat in Minnesota for both buckthorn species and a potential gain for R. multiflora and A. petiolata. Differences in predictions as a result of input occurrence data source were most pronounced in future climate projections.