Cargando…
On the Convergence and Capability of the Large-Eddy Simulation of Concentration Fluctuations in Passive Plumes for a Neutral Boundary Layer at Infinite Reynolds Number
Large-eddy simulation (LES) experiments have been performed using the Parallelized LES Model (PALM). A methodology for validating and understanding LES results for plume dispersion and concentration fluctuations in an atmospheric-like flow is presented. A wide range of grid resolutions is shown to b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392951/ https://www.ncbi.nlm.nih.gov/pubmed/32801384 http://dx.doi.org/10.1007/s10546-020-00537-6 |
Sumario: | Large-eddy simulation (LES) experiments have been performed using the Parallelized LES Model (PALM). A methodology for validating and understanding LES results for plume dispersion and concentration fluctuations in an atmospheric-like flow is presented. A wide range of grid resolutions is shown to be necessary for investigating the convergence of statistical characteristics of velocity and scalar fields. For the scalar, the statistical moments up to the fourth order and the shape of the concentration probability density function (p.d.f.) are examined. The mean concentration is influenced by grid resolution, with the highest resolution simulation showing a lower mean concentration, linked to larger turbulent structures. However, a clear tendency to convergence of the concentration variance is observed at the two higher resolutions. This behaviour is explained by showing that the mechanisms driving the mean and the variance are differently influenced by the grid resolution. The analysis of skewness and kurtosis allows also the obtaining of general results on plume concentration fluctuations. Irrespective of grid resolution, a family of Gamma p.d.f.s well represents the shape of the concentration p.d.f. but only beyond the peak of the concentration fluctuation intensity. In the early plume dispersion phases, the moments of the p.d.f. are in good agreement with those generated by a fluctuating plume model. To the best of our knowledge, our study demonstrates for the first time that, if resolution and averaging time are adequate, atmospheric LES provides a trustworthy representation of the high order moments of the concentration field, up to the fourth order, for a dispersing plume. |
---|