Cargando…

The Photothermal Effect of Targeted Methotrexate-Functionalized Multi-Walled Carbon Nanotubes on MCF7 Cells

Our goal is to reduce the release rate of methotrexate (MTX) and increase cell death efficiency.Carboxylated multi-walled carbon nanotubes (MWCNT-COOH) were functionalized with MTX as a cytotoxic agent, FA as a targeting moiety and polyethylene amine (PEI) as a hydrophilic agent. Ultimately, MWCNT-M...

Descripción completa

Detalles Bibliográficos
Autores principales: Karimi, Ali, Erfan, Mohammad, Mortazavi, Seyed Alireza, Ghorbani-Bidkorbeh, Fatemeh, Landi, Behnaz, Kobarfard, Farzad, Shirazi, Farshad H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393047/
https://www.ncbi.nlm.nih.gov/pubmed/32802102
http://dx.doi.org/10.22037/ijpr.2020.14484.12423
Descripción
Sumario:Our goal is to reduce the release rate of methotrexate (MTX) and increase cell death efficiency.Carboxylated multi-walled carbon nanotubes (MWCNT-COOH) were functionalized with MTX as a cytotoxic agent, FA as a targeting moiety and polyethylene amine (PEI) as a hydrophilic agent. Ultimately, MWCNT-MTX and MWCNT-MTX-PEI-FA were synthesized. Methotrexate release studies were conducted in PBS and cytotoxic studies were carried out by means of the MTT tassay. Methotrexate release studies from these two carriers demonstrated that the attachment of PEI-FA onto MWCNT-MTX reduces the release rate of methotrexate. The IC50 of MWCNT-MTX-PEI-FA and MWCNT-MTX have been calculated as follows: 9.89 ± 0.38 and 16.98 ± 1.07 µg/mL, respectively. Cytotoxic studies on MWCNT-MTX-PEI-FA and MWCNT-MTX in the presence of an IR laser showed that at high concentrations, they had similar toxicities due to the MWCNT’s photothermal effect. Targeting effect studies in the presence of the IR laser on the cancer cells have shown that MWCNT-MTX-PEI-FA, MWCNT-MTX, and f-MWCNT have triggered the death of cancer cells by 55.11 ± 1.97%, 49.64 ± 2.44%, and 37 ± 0.70%, respectively. The release profile of MTX in MWCNT-MTX-PEI-FA showed that the presence of PEI acts as a barrier against release and reduces the MTX release rate. In the absence of a laser, MWCNT-MTX-PEI-FA exhibits the highest degree of cytotoxicity. In the presence of a laser, the cytotoxicity of MWCNT-MTX and MWCNT-MTX-PEI-FA has no significant difference. Targeting studies have shown that MWCNT-MTX-PEI-FA can be absorbed by cancer cells exclusively.