Cargando…
Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network
Recent large-scale genome-wide association studies have identified common genetic variations that may contribute to the risk of amyotrophic lateral sclerosis (ALS). However, pinpointing the risk variants in noncoding regions and underlying biological mechanisms remains a major challenge. Here, we co...
Autores principales: | Yousefian-Jazi, Ali, Sung, Min Kyung, Lee, Taeyeop, Hong, Yoon-Ho, Choi, Jung Kyoon, Choi, Jinwook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393092/ https://www.ncbi.nlm.nih.gov/pubmed/32732921 http://dx.doi.org/10.1038/s41598-020-69790-6 |
Ejemplares similares
-
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis
por: Yousefian-Jazi, Ali, et al.
Publicado: (2020) -
RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective
por: Laneve, Pietro, et al.
Publicado: (2021) -
Convolutional neural network model to predict causal risk factors that share complex regulatory features
por: Lee, Taeyeop, et al.
Publicado: (2019) -
Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
por: Karim, Abdul, et al.
Publicado: (2021) -
Body fat compartment determination by encoder–decoder convolutional neural network: application to amyotrophic lateral sclerosis
por: Vernikouskaya, Ina, et al.
Publicado: (2022)