Cargando…
AutoPath: Image-Specific Inference for 3D Segmentation
In recent years, deep convolutional neural networks (CNNs) has made great achievements in the field of medical image segmentation, among which residual structure plays a significant role in the rapid development of CNN-based segmentation. However, the 3D residual networks inevitably bring a huge com...
Autores principales: | Sun, Dong, Wang, Yi, Ni, Dong, Wang, Tianfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393252/ https://www.ncbi.nlm.nih.gov/pubmed/32792934 http://dx.doi.org/10.3389/fnbot.2020.00049 |
Ejemplares similares
-
Low-Rank Based Image Analyses for Pathological MR Image Segmentation and Recovery
por: Lin, Chuanlu, et al.
Publicado: (2019) -
Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
por: Abdelaziz, Mohammed, et al.
Publicado: (2022) -
Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation
por: Avesta, Arman, et al.
Publicado: (2023) -
Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline
por: Wang, Jiahui, et al.
Publicado: (2014) -
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
por: Lei, Baiying, et al.
Publicado: (2016)