Cargando…
Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices
The recent years have witnessed a dramatic increase in the use of reinforcement learning (RL) models in social, cognitive and affective neuroscience. This approach, in combination with neuroimaging techniques such as functional magnetic resonance imaging, enables quantitative investigations into lat...
Autores principales: | Zhang, Lei, Lengersdorff, Lukas, Mikus, Nace, Gläscher, Jan, Lamm, Claus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393303/ https://www.ncbi.nlm.nih.gov/pubmed/32608484 http://dx.doi.org/10.1093/scan/nsaa089 |
Ejemplares similares
-
Social cognitive network neuroscience
por: Krendl, Anne C, et al.
Publicado: (2022) -
Health neuroscience 2.0: integration with social, cognitive and affective neuroscience
por: Inagaki, Tristen K
Publicado: (2020) -
Social and affective neuroscience: an Australian perspective
por: Kumfor, Fiona, et al.
Publicado: (2020) -
Computational approaches to the neuroscience of social perception
por: Brooks, Jeffrey A, et al.
Publicado: (2020) -
A Guide to Representational Similarity Analysis for Social Neuroscience
por: Popal, Haroon, et al.
Publicado: (2020)