Cargando…

Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice

Parkinson’s disease (PD) is a progressive neurological disorder estimated to affect 7–10 million people worldwide. There is no treatment available that cures or slows the progression of PD. Elevated leucine-rich repeat kinase 2 (LRRK2) activity has been associated with genetic and sporadic forms of...

Descripción completa

Detalles Bibliográficos
Autores principales: Korecka, Joanna A., Thomas, Ria, Hinrich, Anthony J., Moskites, Alyssa M., Macbain, Zach K., Hallett, Penelope J., Isacson, Ole, Hastings, Michelle L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393423/
https://www.ncbi.nlm.nih.gov/pubmed/32736291
http://dx.doi.org/10.1016/j.omtn.2020.06.027
_version_ 1783565042224988160
author Korecka, Joanna A.
Thomas, Ria
Hinrich, Anthony J.
Moskites, Alyssa M.
Macbain, Zach K.
Hallett, Penelope J.
Isacson, Ole
Hastings, Michelle L.
author_facet Korecka, Joanna A.
Thomas, Ria
Hinrich, Anthony J.
Moskites, Alyssa M.
Macbain, Zach K.
Hallett, Penelope J.
Isacson, Ole
Hastings, Michelle L.
author_sort Korecka, Joanna A.
collection PubMed
description Parkinson’s disease (PD) is a progressive neurological disorder estimated to affect 7–10 million people worldwide. There is no treatment available that cures or slows the progression of PD. Elevated leucine-rich repeat kinase 2 (LRRK2) activity has been associated with genetic and sporadic forms of PD and, thus, reducing LRRK2 function is a promising therapeutic strategy. We have previously reported that an antisense oligonucleotide (ASO) that blocks splicing of LRRK2 exon 41, which encodes part of the kinase domain, reverses aberrant endoplasmic reticulum (ER) calcium levels and mitophagy defects in PD patient-derived cell lines harboring the LRRK2 G2019S mutation. In this study, we show that treating transgenic mice expressing human wild-type or G2019S LRRK2 with a single intracerebroventricular injection of ASO induces exon 41 skipping and results in a decrease in phosphorylation of the LRRK2 kinase substrate RAB10. Exon 41 skipping also reverses LRRK2 kinase-dependent changes in LC3B II/I ratios, a marker for the autophagic process. These results demonstrate the potential of LRRK2 exon 41 skipping as a possible therapeutic strategy to modulate pathogenic LRRK2 kinase activity associated with PD development.
format Online
Article
Text
id pubmed-7393423
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society of Gene & Cell Therapy
record_format MEDLINE/PubMed
spelling pubmed-73934232020-08-07 Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice Korecka, Joanna A. Thomas, Ria Hinrich, Anthony J. Moskites, Alyssa M. Macbain, Zach K. Hallett, Penelope J. Isacson, Ole Hastings, Michelle L. Mol Ther Nucleic Acids Article Parkinson’s disease (PD) is a progressive neurological disorder estimated to affect 7–10 million people worldwide. There is no treatment available that cures or slows the progression of PD. Elevated leucine-rich repeat kinase 2 (LRRK2) activity has been associated with genetic and sporadic forms of PD and, thus, reducing LRRK2 function is a promising therapeutic strategy. We have previously reported that an antisense oligonucleotide (ASO) that blocks splicing of LRRK2 exon 41, which encodes part of the kinase domain, reverses aberrant endoplasmic reticulum (ER) calcium levels and mitophagy defects in PD patient-derived cell lines harboring the LRRK2 G2019S mutation. In this study, we show that treating transgenic mice expressing human wild-type or G2019S LRRK2 with a single intracerebroventricular injection of ASO induces exon 41 skipping and results in a decrease in phosphorylation of the LRRK2 kinase substrate RAB10. Exon 41 skipping also reverses LRRK2 kinase-dependent changes in LC3B II/I ratios, a marker for the autophagic process. These results demonstrate the potential of LRRK2 exon 41 skipping as a possible therapeutic strategy to modulate pathogenic LRRK2 kinase activity associated with PD development. American Society of Gene & Cell Therapy 2020-06-27 /pmc/articles/PMC7393423/ /pubmed/32736291 http://dx.doi.org/10.1016/j.omtn.2020.06.027 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Korecka, Joanna A.
Thomas, Ria
Hinrich, Anthony J.
Moskites, Alyssa M.
Macbain, Zach K.
Hallett, Penelope J.
Isacson, Ole
Hastings, Michelle L.
Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice
title Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice
title_full Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice
title_fullStr Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice
title_full_unstemmed Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice
title_short Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice
title_sort splice-switching antisense oligonucleotides reduce lrrk2 kinase activity in human lrrk2 transgenic mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393423/
https://www.ncbi.nlm.nih.gov/pubmed/32736291
http://dx.doi.org/10.1016/j.omtn.2020.06.027
work_keys_str_mv AT koreckajoannaa spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT thomasria spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT hinrichanthonyj spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT moskitesalyssam spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT macbainzachk spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT hallettpenelopej spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT isacsonole spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice
AT hastingsmichellel spliceswitchingantisenseoligonucleotidesreducelrrk2kinaseactivityinhumanlrrk2transgenicmice