Cargando…

Predicting Human Olfactory Perception from Activities of Odorant Receptors

Odor perception in humans is initiated by activation of odorant receptors (ORs) in the nose. However, the ORs linked to specific olfactory percepts are unknown, unlike in vision or taste where receptors are linked to perception of different colors and tastes. The large family of ORs (~400) and multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowalewski, Joel, Ray, Anandasankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393469/
https://www.ncbi.nlm.nih.gov/pubmed/32731170
http://dx.doi.org/10.1016/j.isci.2020.101361
Descripción
Sumario:Odor perception in humans is initiated by activation of odorant receptors (ORs) in the nose. However, the ORs linked to specific olfactory percepts are unknown, unlike in vision or taste where receptors are linked to perception of different colors and tastes. The large family of ORs (~400) and multiple receptors activated by an odorant present serious challenges. Here, we first use machine learning to screen ~0.5 million compounds for new ligands and identify enriched structural motifs for ligands of 34 human ORs. We next demonstrate that the activity of ORs successfully predicts many of the 146 different perceptual qualities of chemicals. Although chemical features have been used to model odor percepts, we show that biologically relevant OR activity is often superior. Interestingly, each odor percept could be predicted with very few ORs, implying they contribute more to each olfactory percept. A similar model is observed in Drosophila where comprehensive OR-neuron data are available.