Cargando…
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis
BACKGROUND: Nonnegative matrix factorization (NMF) has been successfully used for electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, many adaptive algorithms have been developed. However, the performance of their use in EEG data analysis has not been fully compared....
Autores principales: | Hu, Guoqiang, Zhou, Tianyi, Luo, Siwen, Mahini, Reza, Xu, Jing, Chang, Yi, Cong, Fengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393858/ https://www.ncbi.nlm.nih.gov/pubmed/32736630 http://dx.doi.org/10.1186/s12938-020-00796-x |
Ejemplares similares
-
Some new sharp bounds for the spectral radius of a nonnegative matrix and its application
por: He, Jun, et al.
Publicado: (2017) -
Bounds for the Z-spectral radius of nonnegative tensors
por: He, Jun, et al.
Publicado: (2016) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
A new bound for the spectral radius of nonnegative tensors
por: Li, Suhua, et al.
Publicado: (2017) -
Pattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation
por: Zhang, Junying, et al.
Publicado: (2008)