Cargando…

A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants

BACKGROUND: Peroxiredoxins (Prxs) are a large family of antioxidant enzymes that respond to biotic and abiotic stress by decomposing reactive oxygen species (ROS). In this study, the stress tolerance function of the Th2CysPrx gene was further analysed. It lays a foundation for further studies on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuanyuan, Liu, Zhongyuan, Wang, Peilong, Jiang, Bo, Lei, Xiaojin, Wu, Jing, Dong, Wenfang, Gao, Caiqiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393912/
https://www.ncbi.nlm.nih.gov/pubmed/32731892
http://dx.doi.org/10.1186/s12870-020-02562-6
Descripción
Sumario:BACKGROUND: Peroxiredoxins (Prxs) are a large family of antioxidant enzymes that respond to biotic and abiotic stress by decomposing reactive oxygen species (ROS). In this study, the stress tolerance function of the Th2CysPrx gene was further analysed. It lays a foundation for further studies on the salt tolerance molecular mechanism of T. hispida and improved salt tolerance via transgenic plants. RESULTS: In this study, the stress tolerance function of the Th2CysPrx gene was further analysed. The results of transgenic tobacco showed higher seed germination rates, root lengths, and fresh weight under salt stress than wild-type tobacco. Simultaneously, physiological indicators of transgenic tobacco and T. hispida showed that Th2CysPrx improved the activities of antioxidant enzymes and enhanced ROS removal ability to decrease cellular damage under salt stress. Moreover, Th2CysPrx improved the expression levels of four antioxidant genes (ThGSTZ1, ThGPX, ThSOD and ThPOD). CONCLUSIONS: Overall, these results suggested that Th2CysPrx enhanced the salt tolerance of the transgenic plants. These findings lay a foundation for further studies on the salt tolerance molecular mechanism of T. hispida and improved salt tolerance via transgenic plants.