Cargando…
Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress
BACKGROUND: Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393922/ https://www.ncbi.nlm.nih.gov/pubmed/32736517 http://dx.doi.org/10.1186/s12870-020-02559-1 |
_version_ | 1783565132085854208 |
---|---|
author | Dong, Wenke Ma, Xiang Jiang, Hanyu Zhao, Chunxu Ma, Huiling |
author_facet | Dong, Wenke Ma, Xiang Jiang, Hanyu Zhao, Chunxu Ma, Huiling |
author_sort | Dong, Wenke |
collection | PubMed |
description | BACKGROUND: Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance of lawns. P.pratensis var. anceps cv. Qinghai (PQ) is widely distributed in the Qinghai-Tibet Plateau above 3000 m. PQ has greater cold tolerance than the commercially cultivated P.pratensis varieties. However, existing studies on the response mechanism of PQ to low temperatures have mainly focused on physiological and biochemical perspectives, while changes in the PQ transcriptome during the response to cold stress have not been reported. RESULTS: To investigate the molecular mechanism of the PQ cold response and identify genes to improve the low-temperature tolerance of P.pratensis, we analyzed and compared the transcriptomes of PQ and the cold-sensitive P.pratensis cv. ‘Baron’ (PB) under cold stress using RNA sequencing. We identified 5996 and 3285 differentially expressed genes (DEGs) between the treatment vs control comparison of PQ and PB, respectively, with 5612 DEGs specific to PQ. Based on the DEGs, important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as “starch and sucrose metabolism”, “protein processing in endoplasmic reticulum”, “phenylalanine metabolism” and “glycolysis/gluconeogenesis” were significantly enriched in PQ, and “starch and sucrose metabolism”, “phenylpropanoid biosynthesis”, “galactose metabolism” and “glutathione metabolism” were significantly enriched in PB. In addition, the “glycolysis” and “citrate cycle (TCA cycle)” pathways were identified as involved in cold tolerance of P.pratensis. CONCLUSIONS: As we know, this is the first study to explore the transcriptome of P.pratensis var. anceps cv. Qinghai. Our study not noly provides important insights into the molecular mechanisms of P.pratensis var. anceps cv. Qinghai responds to cold stress, but also systematically reveals the changes of key genes and products of glycolysis and TCA cycle in response to cold stress, which is conductive to the breeding of cold-tolerance P.pratensis genotype. |
format | Online Article Text |
id | pubmed-7393922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-73939222020-08-04 Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress Dong, Wenke Ma, Xiang Jiang, Hanyu Zhao, Chunxu Ma, Huiling BMC Plant Biol Research Article BACKGROUND: Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance of lawns. P.pratensis var. anceps cv. Qinghai (PQ) is widely distributed in the Qinghai-Tibet Plateau above 3000 m. PQ has greater cold tolerance than the commercially cultivated P.pratensis varieties. However, existing studies on the response mechanism of PQ to low temperatures have mainly focused on physiological and biochemical perspectives, while changes in the PQ transcriptome during the response to cold stress have not been reported. RESULTS: To investigate the molecular mechanism of the PQ cold response and identify genes to improve the low-temperature tolerance of P.pratensis, we analyzed and compared the transcriptomes of PQ and the cold-sensitive P.pratensis cv. ‘Baron’ (PB) under cold stress using RNA sequencing. We identified 5996 and 3285 differentially expressed genes (DEGs) between the treatment vs control comparison of PQ and PB, respectively, with 5612 DEGs specific to PQ. Based on the DEGs, important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as “starch and sucrose metabolism”, “protein processing in endoplasmic reticulum”, “phenylalanine metabolism” and “glycolysis/gluconeogenesis” were significantly enriched in PQ, and “starch and sucrose metabolism”, “phenylpropanoid biosynthesis”, “galactose metabolism” and “glutathione metabolism” were significantly enriched in PB. In addition, the “glycolysis” and “citrate cycle (TCA cycle)” pathways were identified as involved in cold tolerance of P.pratensis. CONCLUSIONS: As we know, this is the first study to explore the transcriptome of P.pratensis var. anceps cv. Qinghai. Our study not noly provides important insights into the molecular mechanisms of P.pratensis var. anceps cv. Qinghai responds to cold stress, but also systematically reveals the changes of key genes and products of glycolysis and TCA cycle in response to cold stress, which is conductive to the breeding of cold-tolerance P.pratensis genotype. BioMed Central 2020-07-31 /pmc/articles/PMC7393922/ /pubmed/32736517 http://dx.doi.org/10.1186/s12870-020-02559-1 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Dong, Wenke Ma, Xiang Jiang, Hanyu Zhao, Chunxu Ma, Huiling Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress |
title | Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress |
title_full | Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress |
title_fullStr | Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress |
title_full_unstemmed | Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress |
title_short | Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress |
title_sort | physiological and transcriptome analysis of poa pratensis var. anceps cv. qinghai in response to cold stress |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393922/ https://www.ncbi.nlm.nih.gov/pubmed/32736517 http://dx.doi.org/10.1186/s12870-020-02559-1 |
work_keys_str_mv | AT dongwenke physiologicalandtranscriptomeanalysisofpoapratensisvarancepscvqinghaiinresponsetocoldstress AT maxiang physiologicalandtranscriptomeanalysisofpoapratensisvarancepscvqinghaiinresponsetocoldstress AT jianghanyu physiologicalandtranscriptomeanalysisofpoapratensisvarancepscvqinghaiinresponsetocoldstress AT zhaochunxu physiologicalandtranscriptomeanalysisofpoapratensisvarancepscvqinghaiinresponsetocoldstress AT mahuiling physiologicalandtranscriptomeanalysisofpoapratensisvarancepscvqinghaiinresponsetocoldstress |