Cargando…
Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
BACKGROUND: The COVID-19 pandemic has spread across the globe with alarming speed, morbidity and mortality. Immediate triage of suspected patients with chest infections caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. PURPOSE: To develop...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393955/ https://www.ncbi.nlm.nih.gov/pubmed/32729810 http://dx.doi.org/10.1148/radiol.2020202439 |
_version_ | 1783565139367165952 |
---|---|
author | Lessmann, Nikolas Sánchez, Clara I. Beenen, Ludo Boulogne, Luuk H. Brink, Monique Calli, Erdi Charbonnier, Jean-Paul Dofferhoff, Ton van Everdingen, Wouter M. Gerke, Paul K. Geurts, Bram Gietema, Hester A. Groeneveld, Miriam van Harten, Louis Hendrix, Nils Hendrix, Ward Huisman, Henkjan J. Išgum, Ivana Jacobs, Colin Kluge, Ruben Kok, Michel Krdzalic, Jasenko Lassen-Schmidt, Bianca van Leeuwen, Kicky Meakin, James Overkamp, Mike van Rees Vellinga, Tjalco van Rikxoort, Eva M. Samperna, Riccardo Schaefer-Prokop, Cornelia Schalekamp, Steven Scholten, Ernst Th. Sital, Cheryl Stöger, Lauran Teuwen, Jonas Vaidhya Venkadesh, Kiran de Vente, Coen Vermaat, Marieke Xie, Weiyi de Wilde, Bram Prokop, Mathias van Ginneken, Bram |
author_facet | Lessmann, Nikolas Sánchez, Clara I. Beenen, Ludo Boulogne, Luuk H. Brink, Monique Calli, Erdi Charbonnier, Jean-Paul Dofferhoff, Ton van Everdingen, Wouter M. Gerke, Paul K. Geurts, Bram Gietema, Hester A. Groeneveld, Miriam van Harten, Louis Hendrix, Nils Hendrix, Ward Huisman, Henkjan J. Išgum, Ivana Jacobs, Colin Kluge, Ruben Kok, Michel Krdzalic, Jasenko Lassen-Schmidt, Bianca van Leeuwen, Kicky Meakin, James Overkamp, Mike van Rees Vellinga, Tjalco van Rikxoort, Eva M. Samperna, Riccardo Schaefer-Prokop, Cornelia Schalekamp, Steven Scholten, Ernst Th. Sital, Cheryl Stöger, Lauran Teuwen, Jonas Vaidhya Venkadesh, Kiran de Vente, Coen Vermaat, Marieke Xie, Weiyi de Wilde, Bram Prokop, Mathias van Ginneken, Bram |
author_sort | Lessmann, Nikolas |
collection | PubMed |
description | BACKGROUND: The COVID-19 pandemic has spread across the globe with alarming speed, morbidity and mortality. Immediate triage of suspected patients with chest infections caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. PURPOSE: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the CO-RADS and CT severity scoring systems. MATERIALS AND METHODS: CORADS-AI consists of three deep learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19 and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who received an unenhanced chest CT scan due to clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic (ROC) analysis, linearly-weighted kappa and classification accuracy. RESULTS: 105 patients (62 ± 16 years, 61 men) and 262 patients (64 ± 16 years, 154 men) were evaluated in the internal and the external test set, respectively. The system discriminated between COVID-19 positive and negative patients with areas under the ROC curve of 0.95 (95% CI: 0.91-0.98) and 0.88 (95% CI: 0.84-0.93). Agreement with the eight human observers was moderate to substantial with a mean linearly-weighted kappa of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. CONCLUSION: CORADS-AI correctly identified COVID-19 positive patients with high diagnostic performance from chest CT exams, assigned standardized CO-RADS and CT severity scores in good agreement with eight independent observers and generalized well to external data. |
format | Online Article Text |
id | pubmed-7393955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Radiological Society of North America |
record_format | MEDLINE/PubMed |
spelling | pubmed-73939552020-08-10 Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence Lessmann, Nikolas Sánchez, Clara I. Beenen, Ludo Boulogne, Luuk H. Brink, Monique Calli, Erdi Charbonnier, Jean-Paul Dofferhoff, Ton van Everdingen, Wouter M. Gerke, Paul K. Geurts, Bram Gietema, Hester A. Groeneveld, Miriam van Harten, Louis Hendrix, Nils Hendrix, Ward Huisman, Henkjan J. Išgum, Ivana Jacobs, Colin Kluge, Ruben Kok, Michel Krdzalic, Jasenko Lassen-Schmidt, Bianca van Leeuwen, Kicky Meakin, James Overkamp, Mike van Rees Vellinga, Tjalco van Rikxoort, Eva M. Samperna, Riccardo Schaefer-Prokop, Cornelia Schalekamp, Steven Scholten, Ernst Th. Sital, Cheryl Stöger, Lauran Teuwen, Jonas Vaidhya Venkadesh, Kiran de Vente, Coen Vermaat, Marieke Xie, Weiyi de Wilde, Bram Prokop, Mathias van Ginneken, Bram Radiology Original Research BACKGROUND: The COVID-19 pandemic has spread across the globe with alarming speed, morbidity and mortality. Immediate triage of suspected patients with chest infections caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. PURPOSE: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the CO-RADS and CT severity scoring systems. MATERIALS AND METHODS: CORADS-AI consists of three deep learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19 and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who received an unenhanced chest CT scan due to clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic (ROC) analysis, linearly-weighted kappa and classification accuracy. RESULTS: 105 patients (62 ± 16 years, 61 men) and 262 patients (64 ± 16 years, 154 men) were evaluated in the internal and the external test set, respectively. The system discriminated between COVID-19 positive and negative patients with areas under the ROC curve of 0.95 (95% CI: 0.91-0.98) and 0.88 (95% CI: 0.84-0.93). Agreement with the eight human observers was moderate to substantial with a mean linearly-weighted kappa of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. CONCLUSION: CORADS-AI correctly identified COVID-19 positive patients with high diagnostic performance from chest CT exams, assigned standardized CO-RADS and CT severity scores in good agreement with eight independent observers and generalized well to external data. Radiological Society of North America 2020-07-30 /pmc/articles/PMC7393955/ /pubmed/32729810 http://dx.doi.org/10.1148/radiol.2020202439 Text en 2020 by the Radiological Society of North America, Inc. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections. |
spellingShingle | Original Research Lessmann, Nikolas Sánchez, Clara I. Beenen, Ludo Boulogne, Luuk H. Brink, Monique Calli, Erdi Charbonnier, Jean-Paul Dofferhoff, Ton van Everdingen, Wouter M. Gerke, Paul K. Geurts, Bram Gietema, Hester A. Groeneveld, Miriam van Harten, Louis Hendrix, Nils Hendrix, Ward Huisman, Henkjan J. Išgum, Ivana Jacobs, Colin Kluge, Ruben Kok, Michel Krdzalic, Jasenko Lassen-Schmidt, Bianca van Leeuwen, Kicky Meakin, James Overkamp, Mike van Rees Vellinga, Tjalco van Rikxoort, Eva M. Samperna, Riccardo Schaefer-Prokop, Cornelia Schalekamp, Steven Scholten, Ernst Th. Sital, Cheryl Stöger, Lauran Teuwen, Jonas Vaidhya Venkadesh, Kiran de Vente, Coen Vermaat, Marieke Xie, Weiyi de Wilde, Bram Prokop, Mathias van Ginneken, Bram Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence |
title | Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence |
title_full | Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence |
title_fullStr | Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence |
title_full_unstemmed | Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence |
title_short | Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence |
title_sort | automated assessment of co-rads and chest ct severity scores in patients with suspected covid-19 using artificial intelligence |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393955/ https://www.ncbi.nlm.nih.gov/pubmed/32729810 http://dx.doi.org/10.1148/radiol.2020202439 |
work_keys_str_mv | AT lessmannnikolas automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT sanchezclarai automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT beenenludo automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT boulogneluukh automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT brinkmonique automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT callierdi automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT charbonnierjeanpaul automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT dofferhoffton automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vaneverdingenwouterm automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT gerkepaulk automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT geurtsbram automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT gietemahestera automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT groeneveldmiriam automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vanhartenlouis automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT hendrixnils automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT hendrixward automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT huismanhenkjanj automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT isgumivana automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT jacobscolin automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT klugeruben automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT kokmichel automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT krdzalicjasenko automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT lassenschmidtbianca automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vanleeuwenkicky automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT meakinjames automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT overkampmike automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vanreesvellingatjalco automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vanrikxoortevam automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT sampernariccardo automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT schaeferprokopcornelia automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT schalekampsteven automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT scholtenernstth automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT sitalcheryl automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT stogerlauran automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT teuwenjonas automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vaidhyavenkadeshkiran automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT deventecoen automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vermaatmarieke automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT xieweiyi automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT dewildebram automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT prokopmathias automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence AT vanginnekenbram automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence |