Cargando…

Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence

BACKGROUND: The COVID-19 pandemic has spread across the globe with alarming speed, morbidity and mortality. Immediate triage of suspected patients with chest infections caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. PURPOSE: To develop...

Descripción completa

Detalles Bibliográficos
Autores principales: Lessmann, Nikolas, Sánchez, Clara I., Beenen, Ludo, Boulogne, Luuk H., Brink, Monique, Calli, Erdi, Charbonnier, Jean-Paul, Dofferhoff, Ton, van Everdingen, Wouter M., Gerke, Paul K., Geurts, Bram, Gietema, Hester A., Groeneveld, Miriam, van Harten, Louis, Hendrix, Nils, Hendrix, Ward, Huisman, Henkjan J., Išgum, Ivana, Jacobs, Colin, Kluge, Ruben, Kok, Michel, Krdzalic, Jasenko, Lassen-Schmidt, Bianca, van Leeuwen, Kicky, Meakin, James, Overkamp, Mike, van Rees Vellinga, Tjalco, van Rikxoort, Eva M., Samperna, Riccardo, Schaefer-Prokop, Cornelia, Schalekamp, Steven, Scholten, Ernst Th., Sital, Cheryl, Stöger, Lauran, Teuwen, Jonas, Vaidhya Venkadesh, Kiran, de Vente, Coen, Vermaat, Marieke, Xie, Weiyi, de Wilde, Bram, Prokop, Mathias, van Ginneken, Bram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Radiological Society of North America 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393955/
https://www.ncbi.nlm.nih.gov/pubmed/32729810
http://dx.doi.org/10.1148/radiol.2020202439
_version_ 1783565139367165952
author Lessmann, Nikolas
Sánchez, Clara I.
Beenen, Ludo
Boulogne, Luuk H.
Brink, Monique
Calli, Erdi
Charbonnier, Jean-Paul
Dofferhoff, Ton
van Everdingen, Wouter M.
Gerke, Paul K.
Geurts, Bram
Gietema, Hester A.
Groeneveld, Miriam
van Harten, Louis
Hendrix, Nils
Hendrix, Ward
Huisman, Henkjan J.
Išgum, Ivana
Jacobs, Colin
Kluge, Ruben
Kok, Michel
Krdzalic, Jasenko
Lassen-Schmidt, Bianca
van Leeuwen, Kicky
Meakin, James
Overkamp, Mike
van Rees Vellinga, Tjalco
van Rikxoort, Eva M.
Samperna, Riccardo
Schaefer-Prokop, Cornelia
Schalekamp, Steven
Scholten, Ernst Th.
Sital, Cheryl
Stöger, Lauran
Teuwen, Jonas
Vaidhya Venkadesh, Kiran
de Vente, Coen
Vermaat, Marieke
Xie, Weiyi
de Wilde, Bram
Prokop, Mathias
van Ginneken, Bram
author_facet Lessmann, Nikolas
Sánchez, Clara I.
Beenen, Ludo
Boulogne, Luuk H.
Brink, Monique
Calli, Erdi
Charbonnier, Jean-Paul
Dofferhoff, Ton
van Everdingen, Wouter M.
Gerke, Paul K.
Geurts, Bram
Gietema, Hester A.
Groeneveld, Miriam
van Harten, Louis
Hendrix, Nils
Hendrix, Ward
Huisman, Henkjan J.
Išgum, Ivana
Jacobs, Colin
Kluge, Ruben
Kok, Michel
Krdzalic, Jasenko
Lassen-Schmidt, Bianca
van Leeuwen, Kicky
Meakin, James
Overkamp, Mike
van Rees Vellinga, Tjalco
van Rikxoort, Eva M.
Samperna, Riccardo
Schaefer-Prokop, Cornelia
Schalekamp, Steven
Scholten, Ernst Th.
Sital, Cheryl
Stöger, Lauran
Teuwen, Jonas
Vaidhya Venkadesh, Kiran
de Vente, Coen
Vermaat, Marieke
Xie, Weiyi
de Wilde, Bram
Prokop, Mathias
van Ginneken, Bram
author_sort Lessmann, Nikolas
collection PubMed
description BACKGROUND: The COVID-19 pandemic has spread across the globe with alarming speed, morbidity and mortality. Immediate triage of suspected patients with chest infections caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. PURPOSE: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the CO-RADS and CT severity scoring systems. MATERIALS AND METHODS: CORADS-AI consists of three deep learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19 and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who received an unenhanced chest CT scan due to clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic (ROC) analysis, linearly-weighted kappa and classification accuracy. RESULTS: 105 patients (62 ± 16 years, 61 men) and 262 patients (64 ± 16 years, 154 men) were evaluated in the internal and the external test set, respectively. The system discriminated between COVID-19 positive and negative patients with areas under the ROC curve of 0.95 (95% CI: 0.91-0.98) and 0.88 (95% CI: 0.84-0.93). Agreement with the eight human observers was moderate to substantial with a mean linearly-weighted kappa of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. CONCLUSION: CORADS-AI correctly identified COVID-19 positive patients with high diagnostic performance from chest CT exams, assigned standardized CO-RADS and CT severity scores in good agreement with eight independent observers and generalized well to external data.
format Online
Article
Text
id pubmed-7393955
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Radiological Society of North America
record_format MEDLINE/PubMed
spelling pubmed-73939552020-08-10 Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence Lessmann, Nikolas Sánchez, Clara I. Beenen, Ludo Boulogne, Luuk H. Brink, Monique Calli, Erdi Charbonnier, Jean-Paul Dofferhoff, Ton van Everdingen, Wouter M. Gerke, Paul K. Geurts, Bram Gietema, Hester A. Groeneveld, Miriam van Harten, Louis Hendrix, Nils Hendrix, Ward Huisman, Henkjan J. Išgum, Ivana Jacobs, Colin Kluge, Ruben Kok, Michel Krdzalic, Jasenko Lassen-Schmidt, Bianca van Leeuwen, Kicky Meakin, James Overkamp, Mike van Rees Vellinga, Tjalco van Rikxoort, Eva M. Samperna, Riccardo Schaefer-Prokop, Cornelia Schalekamp, Steven Scholten, Ernst Th. Sital, Cheryl Stöger, Lauran Teuwen, Jonas Vaidhya Venkadesh, Kiran de Vente, Coen Vermaat, Marieke Xie, Weiyi de Wilde, Bram Prokop, Mathias van Ginneken, Bram Radiology Original Research BACKGROUND: The COVID-19 pandemic has spread across the globe with alarming speed, morbidity and mortality. Immediate triage of suspected patients with chest infections caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. PURPOSE: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the CO-RADS and CT severity scoring systems. MATERIALS AND METHODS: CORADS-AI consists of three deep learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19 and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who received an unenhanced chest CT scan due to clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic (ROC) analysis, linearly-weighted kappa and classification accuracy. RESULTS: 105 patients (62 ± 16 years, 61 men) and 262 patients (64 ± 16 years, 154 men) were evaluated in the internal and the external test set, respectively. The system discriminated between COVID-19 positive and negative patients with areas under the ROC curve of 0.95 (95% CI: 0.91-0.98) and 0.88 (95% CI: 0.84-0.93). Agreement with the eight human observers was moderate to substantial with a mean linearly-weighted kappa of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. CONCLUSION: CORADS-AI correctly identified COVID-19 positive patients with high diagnostic performance from chest CT exams, assigned standardized CO-RADS and CT severity scores in good agreement with eight independent observers and generalized well to external data. Radiological Society of North America 2020-07-30 /pmc/articles/PMC7393955/ /pubmed/32729810 http://dx.doi.org/10.1148/radiol.2020202439 Text en 2020 by the Radiological Society of North America, Inc. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
spellingShingle Original Research
Lessmann, Nikolas
Sánchez, Clara I.
Beenen, Ludo
Boulogne, Luuk H.
Brink, Monique
Calli, Erdi
Charbonnier, Jean-Paul
Dofferhoff, Ton
van Everdingen, Wouter M.
Gerke, Paul K.
Geurts, Bram
Gietema, Hester A.
Groeneveld, Miriam
van Harten, Louis
Hendrix, Nils
Hendrix, Ward
Huisman, Henkjan J.
Išgum, Ivana
Jacobs, Colin
Kluge, Ruben
Kok, Michel
Krdzalic, Jasenko
Lassen-Schmidt, Bianca
van Leeuwen, Kicky
Meakin, James
Overkamp, Mike
van Rees Vellinga, Tjalco
van Rikxoort, Eva M.
Samperna, Riccardo
Schaefer-Prokop, Cornelia
Schalekamp, Steven
Scholten, Ernst Th.
Sital, Cheryl
Stöger, Lauran
Teuwen, Jonas
Vaidhya Venkadesh, Kiran
de Vente, Coen
Vermaat, Marieke
Xie, Weiyi
de Wilde, Bram
Prokop, Mathias
van Ginneken, Bram
Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
title Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
title_full Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
title_fullStr Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
title_full_unstemmed Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
title_short Automated Assessment of CO-RADS and Chest CT Severity Scores in Patients with Suspected COVID-19 Using Artificial Intelligence
title_sort automated assessment of co-rads and chest ct severity scores in patients with suspected covid-19 using artificial intelligence
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393955/
https://www.ncbi.nlm.nih.gov/pubmed/32729810
http://dx.doi.org/10.1148/radiol.2020202439
work_keys_str_mv AT lessmannnikolas automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT sanchezclarai automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT beenenludo automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT boulogneluukh automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT brinkmonique automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT callierdi automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT charbonnierjeanpaul automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT dofferhoffton automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vaneverdingenwouterm automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT gerkepaulk automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT geurtsbram automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT gietemahestera automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT groeneveldmiriam automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vanhartenlouis automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT hendrixnils automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT hendrixward automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT huismanhenkjanj automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT isgumivana automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT jacobscolin automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT klugeruben automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT kokmichel automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT krdzalicjasenko automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT lassenschmidtbianca automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vanleeuwenkicky automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT meakinjames automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT overkampmike automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vanreesvellingatjalco automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vanrikxoortevam automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT sampernariccardo automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT schaeferprokopcornelia automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT schalekampsteven automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT scholtenernstth automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT sitalcheryl automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT stogerlauran automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT teuwenjonas automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vaidhyavenkadeshkiran automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT deventecoen automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vermaatmarieke automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT xieweiyi automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT dewildebram automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT prokopmathias automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence
AT vanginnekenbram automatedassessmentofcoradsandchestctseverityscoresinpatientswithsuspectedcovid19usingartificialintelligence