Cargando…

Analysis of Nonstationary Radiometer Gain Using Ensemble Detection

Radiometer gain is generally a nonstationary random process, even though it is assumed to be strictly or weakly stationary. Since the radiometer gain signal cannot be observed independently, analysis of its nonstationary properties would be challenging. However, using the time series of postgain vol...

Descripción completa

Detalles Bibliográficos
Autores principales: Aksoy, Mustafa, Rajabi, Hamid, Racette, Paul E., Bradburn, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393976/
https://www.ncbi.nlm.nih.gov/pubmed/32742551
http://dx.doi.org/10.1109/jstars.2020.2993765
Descripción
Sumario:Radiometer gain is generally a nonstationary random process, even though it is assumed to be strictly or weakly stationary. Since the radiometer gain signal cannot be observed independently, analysis of its nonstationary properties would be challenging. However, using the time series of postgain voltages to form an ensemble set, the radiometer gain may be characterized via radiometer calibration. In this article, the ensemble detection algorithm is presented by which the unknown radiometer gain can be analytically characterized when it is following a Gaussian model (as a strictly stationary process) or a 1st order autoregressive, AR(1) model (as a weakly stationary process). In addition, in a particular radiometer calibration scheme, the nonstationary gain can also be represented as either Gaussian or AR(1) process, and parameters of such an equivalent gain model can be retrieved. However, unlike stationary or weakly stationary gain, retrieved parameters of the Gaussian and AR(1) processes, which describe the nonstationary gain, highly depend on the calibration setup and timings.