Cargando…
ENVirT: inference of ecological characteristics of viruses from metagenomic data
BACKGROUND: Estimating the parameters that describe the ecology of viruses,particularly those that are novel, can be made possible using metagenomic approaches. However, the best-performing existing methods require databases to first estimate an average genome length of a viral community before bein...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394321/ https://www.ncbi.nlm.nih.gov/pubmed/30717665 http://dx.doi.org/10.1186/s12859-018-2398-5 |
_version_ | 1783565208630853632 |
---|---|
author | Jayasundara, Duleepa Herath, Damayanthi Senanayake, Damith Saeed, Isaam Yang, Cheng-Yu Sun, Yuan Chang, Bill C. Tang, Sen-Lin Halgamuge, Saman K. |
author_facet | Jayasundara, Duleepa Herath, Damayanthi Senanayake, Damith Saeed, Isaam Yang, Cheng-Yu Sun, Yuan Chang, Bill C. Tang, Sen-Lin Halgamuge, Saman K. |
author_sort | Jayasundara, Duleepa |
collection | PubMed |
description | BACKGROUND: Estimating the parameters that describe the ecology of viruses,particularly those that are novel, can be made possible using metagenomic approaches. However, the best-performing existing methods require databases to first estimate an average genome length of a viral community before being able to estimate other parameters, such as viral richness. Although this approach has been widely used, it can adversely skew results since the majority of viruses are yet to be catalogued in databases. RESULTS: In this paper, we present ENVirT, a method for estimating the richness of novel viral mixtures, and for the first time we also show that it is possible to simultaneously estimate the average genome length without a priori information. This is shown to be a significant improvement over database-dependent methods, since we can now robustly analyze samples that may include novel viral types under-represented in current databases. We demonstrate that the viral richness estimates produced by ENVirT are several orders of magnitude higher in accuracy than the estimates produced by existing methods named PHACCS and CatchAll when benchmarked against simulated data. We repeated the analysis of 20 metavirome samples using ENVirT, which produced results in close agreement with complementary in virto analyses. CONCLUSIONS: These insights were previously not captured by existing computational methods. As such, ENVirT is shown to be an essential tool for enhancing our understanding of novel viral populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2398-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7394321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-73943212020-08-05 ENVirT: inference of ecological characteristics of viruses from metagenomic data Jayasundara, Duleepa Herath, Damayanthi Senanayake, Damith Saeed, Isaam Yang, Cheng-Yu Sun, Yuan Chang, Bill C. Tang, Sen-Lin Halgamuge, Saman K. BMC Bioinformatics Research BACKGROUND: Estimating the parameters that describe the ecology of viruses,particularly those that are novel, can be made possible using metagenomic approaches. However, the best-performing existing methods require databases to first estimate an average genome length of a viral community before being able to estimate other parameters, such as viral richness. Although this approach has been widely used, it can adversely skew results since the majority of viruses are yet to be catalogued in databases. RESULTS: In this paper, we present ENVirT, a method for estimating the richness of novel viral mixtures, and for the first time we also show that it is possible to simultaneously estimate the average genome length without a priori information. This is shown to be a significant improvement over database-dependent methods, since we can now robustly analyze samples that may include novel viral types under-represented in current databases. We demonstrate that the viral richness estimates produced by ENVirT are several orders of magnitude higher in accuracy than the estimates produced by existing methods named PHACCS and CatchAll when benchmarked against simulated data. We repeated the analysis of 20 metavirome samples using ENVirT, which produced results in close agreement with complementary in virto analyses. CONCLUSIONS: These insights were previously not captured by existing computational methods. As such, ENVirT is shown to be an essential tool for enhancing our understanding of novel viral populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2398-5) contains supplementary material, which is available to authorized users. BioMed Central 2019-02-04 /pmc/articles/PMC7394321/ /pubmed/30717665 http://dx.doi.org/10.1186/s12859-018-2398-5 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Jayasundara, Duleepa Herath, Damayanthi Senanayake, Damith Saeed, Isaam Yang, Cheng-Yu Sun, Yuan Chang, Bill C. Tang, Sen-Lin Halgamuge, Saman K. ENVirT: inference of ecological characteristics of viruses from metagenomic data |
title | ENVirT: inference of ecological characteristics of viruses from metagenomic data |
title_full | ENVirT: inference of ecological characteristics of viruses from metagenomic data |
title_fullStr | ENVirT: inference of ecological characteristics of viruses from metagenomic data |
title_full_unstemmed | ENVirT: inference of ecological characteristics of viruses from metagenomic data |
title_short | ENVirT: inference of ecological characteristics of viruses from metagenomic data |
title_sort | envirt: inference of ecological characteristics of viruses from metagenomic data |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394321/ https://www.ncbi.nlm.nih.gov/pubmed/30717665 http://dx.doi.org/10.1186/s12859-018-2398-5 |
work_keys_str_mv | AT jayasundaraduleepa envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT herathdamayanthi envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT senanayakedamith envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT saeedisaam envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT yangchengyu envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT sunyuan envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT changbillc envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT tangsenlin envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata AT halgamugesamank envirtinferenceofecologicalcharacteristicsofvirusesfrommetagenomicdata |