Cargando…
Latent network-based representations for large-scale gene expression data analysis
BACKGROUND: With the recent advancements in high-throughput experimental procedures, biologists are gathering huge quantities of data. A main priority in bioinformatics and computational biology is to provide system level analytical tools capable of meeting an ever-growing production of high-through...
Autores principales: | Dhifli, Wajdi, Puig, Julia, Dispot, Aurélien, Elati, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394327/ https://www.ncbi.nlm.nih.gov/pubmed/30717663 http://dx.doi.org/10.1186/s12859-018-2481-y |
Ejemplares similares
-
Identification of putative master regulators in rheumatoid arthritis synovial fibroblasts using gene expression data and network inference
por: Zerrouk, Naouel, et al.
Publicado: (2020) -
ProtNN: fast and accurate protein 3D-structure classification in structural and topological space
por: Dhifli, Wajdi, et al.
Publicado: (2016) -
From SIR to SEAIRD: A novel data-driven modeling approach based on the Grey-box System Theory to predict the dynamics of COVID-19
por: Pekpe, K. Midzodzi, et al.
Publicado: (2021) -
Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations
por: Way, Gregory P., et al.
Publicado: (2020) -
Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm
por: Karagiannaki, Ioulia, et al.
Publicado: (2022)