Cargando…

Recommendations in pre-registrations and internal review board proposals promote formal power analyses but do not increase sample size

In this preregistered study, we investigated whether the statistical power of a study is higher when researchers are asked to make a formal power analysis before collecting data. We compared the sample size descriptions from two sources: (i) a sample of pre-registrations created according to the gui...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakker, Marjan, Veldkamp, Coosje L. S., van den Akker, Olmo R., van Assen, Marcel A. L. M., Crompvoets, Elise, Ong, How Hwee, Wicherts, Jelte M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394423/
https://www.ncbi.nlm.nih.gov/pubmed/32735597
http://dx.doi.org/10.1371/journal.pone.0236079
Descripción
Sumario:In this preregistered study, we investigated whether the statistical power of a study is higher when researchers are asked to make a formal power analysis before collecting data. We compared the sample size descriptions from two sources: (i) a sample of pre-registrations created according to the guidelines for the Center for Open Science Preregistration Challenge (PCRs) and a sample of institutional review board (IRB) proposals from Tilburg School of Behavior and Social Sciences, which both include a recommendation to do a formal power analysis, and (ii) a sample of pre-registrations created according to the guidelines for Open Science Framework Standard Pre-Data Collection Registrations (SPRs) in which no guidance on sample size planning is given. We found that PCRs and IRBs (72%) more often included sample size decisions based on power analyses than the SPRs (45%). However, this did not result in larger planned sample sizes. The determined sample size of the PCRs and IRB proposals (Md = 90.50) was not higher than the determined sample size of the SPRs (Md = 126.00; W = 3389.5, p = 0.936). Typically, power analyses in the registrations were conducted with G*power, assuming a medium effect size, α = .05 and a power of .80. Only 20% of the power analyses contained enough information to fully reproduce the results and only 62% of these power analyses pertained to the main hypothesis test in the pre-registration. Therefore, we see ample room for improvements in the quality of the registrations and we offer several recommendations to do so.