Cargando…
Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients
Opioids play a critical role in acute postoperative pain management. Our objective was to develop machine learning models to predict postoperative opioid requirements in patients undergoing ambulatory surgery. To develop the models, we used a perioperative dataset of 13,700 patients (≥ 18 years) und...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394436/ https://www.ncbi.nlm.nih.gov/pubmed/32735604 http://dx.doi.org/10.1371/journal.pone.0236833 |
_version_ | 1783565231073525760 |
---|---|
author | Nair, Akira A. Velagapudi, Mihir A. Lang, Jonathan A. Behara, Lakshmana Venigandla, Ravitheja Velagapudi, Nishant Fong, Christine T. Horibe, Mayumi Lang, John D. Nair, Bala G. |
author_facet | Nair, Akira A. Velagapudi, Mihir A. Lang, Jonathan A. Behara, Lakshmana Venigandla, Ravitheja Velagapudi, Nishant Fong, Christine T. Horibe, Mayumi Lang, John D. Nair, Bala G. |
author_sort | Nair, Akira A. |
collection | PubMed |
description | Opioids play a critical role in acute postoperative pain management. Our objective was to develop machine learning models to predict postoperative opioid requirements in patients undergoing ambulatory surgery. To develop the models, we used a perioperative dataset of 13,700 patients (≥ 18 years) undergoing ambulatory surgery between the years 2016–2018. The data, comprising of patient, procedure and provider factors that could influence postoperative pain and opioid requirements, was randomly split into training (80%) and validation (20%) datasets. Machine learning models of different classes were developed to predict categorized levels of postoperative opioid requirements using the training dataset and then evaluated on the validation dataset. Prediction accuracy was used to differentiate model performances. The five types of models that were developed returned the following accuracies at two different stages of surgery: 1) Prior to surgery—Multinomial Logistic Regression: 71%, Naïve Bayes: 67%, Neural Network: 30%, Random Forest: 72%, Extreme Gradient Boost: 71% and 2) End of surgery—Multinomial Logistic Regression: 71%, Naïve Bayes: 63%, Neural Network: 32%, Random Forest: 72%, Extreme Gradient Boost: 70%. Analyzing the sensitivities of the best performing Random Forest model showed that the lower opioid requirements are predicted with better accuracy (89%) as compared with higher opioid requirements (43%). Feature importance (% relative importance) of model predictions showed that the type of procedure (15.4%), medical history (12.9%) and procedure duration (12.0%) were the top three features contributing to model predictions. Overall, the contribution of patient and procedure features towards model predictions were 65% and 35% respectively. Machine learning models could be used to predict postoperative opioid requirements in ambulatory surgery patients and could potentially assist in better management of their postoperative acute pain. |
format | Online Article Text |
id | pubmed-7394436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-73944362020-08-07 Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients Nair, Akira A. Velagapudi, Mihir A. Lang, Jonathan A. Behara, Lakshmana Venigandla, Ravitheja Velagapudi, Nishant Fong, Christine T. Horibe, Mayumi Lang, John D. Nair, Bala G. PLoS One Research Article Opioids play a critical role in acute postoperative pain management. Our objective was to develop machine learning models to predict postoperative opioid requirements in patients undergoing ambulatory surgery. To develop the models, we used a perioperative dataset of 13,700 patients (≥ 18 years) undergoing ambulatory surgery between the years 2016–2018. The data, comprising of patient, procedure and provider factors that could influence postoperative pain and opioid requirements, was randomly split into training (80%) and validation (20%) datasets. Machine learning models of different classes were developed to predict categorized levels of postoperative opioid requirements using the training dataset and then evaluated on the validation dataset. Prediction accuracy was used to differentiate model performances. The five types of models that were developed returned the following accuracies at two different stages of surgery: 1) Prior to surgery—Multinomial Logistic Regression: 71%, Naïve Bayes: 67%, Neural Network: 30%, Random Forest: 72%, Extreme Gradient Boost: 71% and 2) End of surgery—Multinomial Logistic Regression: 71%, Naïve Bayes: 63%, Neural Network: 32%, Random Forest: 72%, Extreme Gradient Boost: 70%. Analyzing the sensitivities of the best performing Random Forest model showed that the lower opioid requirements are predicted with better accuracy (89%) as compared with higher opioid requirements (43%). Feature importance (% relative importance) of model predictions showed that the type of procedure (15.4%), medical history (12.9%) and procedure duration (12.0%) were the top three features contributing to model predictions. Overall, the contribution of patient and procedure features towards model predictions were 65% and 35% respectively. Machine learning models could be used to predict postoperative opioid requirements in ambulatory surgery patients and could potentially assist in better management of their postoperative acute pain. Public Library of Science 2020-07-31 /pmc/articles/PMC7394436/ /pubmed/32735604 http://dx.doi.org/10.1371/journal.pone.0236833 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Nair, Akira A. Velagapudi, Mihir A. Lang, Jonathan A. Behara, Lakshmana Venigandla, Ravitheja Velagapudi, Nishant Fong, Christine T. Horibe, Mayumi Lang, John D. Nair, Bala G. Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
title | Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
title_full | Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
title_fullStr | Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
title_full_unstemmed | Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
title_short | Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
title_sort | machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394436/ https://www.ncbi.nlm.nih.gov/pubmed/32735604 http://dx.doi.org/10.1371/journal.pone.0236833 |
work_keys_str_mv | AT nairakiraa machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT velagapudimihira machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT langjonathana machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT beharalakshmana machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT venigandlaravitheja machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT velagapudinishant machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT fongchristinet machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT horibemayumi machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT langjohnd machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients AT nairbalag machinelearningapproachtopredictpostoperativeopioidrequirementsinambulatorysurgerypatients |