Cargando…

Capsule networks as recurrent models of grouping and segmentation

Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we previously showed that no classic model of visi...

Descripción completa

Detalles Bibliográficos
Autores principales: Doerig, Adrien, Schmittwilken, Lynn, Sayim, Bilge, Manassi, Mauro, Herzog, Michael H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394447/
https://www.ncbi.nlm.nih.gov/pubmed/32692780
http://dx.doi.org/10.1371/journal.pcbi.1008017
Descripción
Sumario:Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we previously showed that no classic model of vision, including ffCNNs, can explain human global shape processing. Here, we show that Capsule Neural Networks (CapsNets), combining ffCNNs with recurrent grouping and segmentation, solve this challenge. We also show that ffCNNs and standard recurrent CNNs do not, suggesting that the grouping and segmentation capabilities of CapsNets are crucial. Furthermore, we provide psychophysical evidence that grouping and segmentation are implemented recurrently in humans, and show that CapsNets reproduce these results well. We discuss why recurrence seems needed to implement grouping and segmentation efficiently. Together, we provide mutually reinforcing psychophysical and computational evidence that a recurrent grouping and segmentation process is essential to understand the visual system and create better models that harness global shape computations.