Cargando…
Capsule networks as recurrent models of grouping and segmentation
Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we previously showed that no classic model of visi...
Autores principales: | Doerig, Adrien, Schmittwilken, Lynn, Sayim, Bilge, Manassi, Mauro, Herzog, Michael H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394447/ https://www.ncbi.nlm.nih.gov/pubmed/32692780 http://dx.doi.org/10.1371/journal.pcbi.1008017 |
Ejemplares similares
-
Global and high-level effects in crowding cannot be predicted by either high-dimensional pooling or target cueing
por: Bornet, Alban, et al.
Publicado: (2021) -
Crowding: Recent advances and perspectives
por: Herzog, Michael H., et al.
Publicado: (2022) -
Grouping and Crowding Affect Target Appearance over Different Spatial Scales
por: Sayim, Bilge, et al.
Publicado: (2013) -
A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities
por: Lonnqvist, Ben, et al.
Publicado: (2021) -
Evaluation of grouped capsule network for intracranial hemorrhage segmentation in CT scans
por: Wang, Lingying, et al.
Publicado: (2023)