Cargando…
Automated trichome counting in soybean using advanced image‐processing techniques
PREMISE: Trichomes are hair‐like appendages extending from the plant epidermis. They serve many important biotic roles, including interference with herbivore movement. Characterizing the number, density, and distribution of trichomes can provide valuable insights on plant response to insect infestat...
Autores principales: | Mirnezami, Seyed Vahid, Young, Therin, Assefa, Teshale, Prichard, Shelby, Nagasubramanian, Koushik, Sandhu, Kulbir, Sarkar, Soumik, Sundararajan, Sriram, O’Neal, Matt E., Ganapathysubramanian, Baskar, Singh, Arti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394713/ https://www.ncbi.nlm.nih.gov/pubmed/32765974 http://dx.doi.org/10.1002/aps3.11375 |
Ejemplares similares
-
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018) -
Development of Optimized Phenomic Predictors for Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection in Soybean
por: Parmley, Kyle, et al.
Publicado: (2019) -
Plant disease identification using explainable 3D deep learning on hyperspectral images
por: Nagasubramanian, Koushik, et al.
Publicado: (2019) -
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
por: Young, Therin J., et al.
Publicado: (2023) -
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
por: Naik, Hsiang Sing, et al.
Publicado: (2017)