Cargando…
Natural history of cognitive development in neuronopathic mucopolysaccharidosis type II (Hunter syndrome): Contribution of genotype to cognitive developmental course
The natural history of cognitive growth in the neuronopathic form of Mucopolysaccharidosis type II (MPS II) is not well defined especially their patterns of development and decline. The ability to predict the developmental course of the neurologically impaired patient is necessary to assess treatmen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394748/ https://www.ncbi.nlm.nih.gov/pubmed/32775211 http://dx.doi.org/10.1016/j.ymgmr.2020.100630 |
Sumario: | The natural history of cognitive growth in the neuronopathic form of Mucopolysaccharidosis type II (MPS II) is not well defined especially their patterns of development and decline. The ability to predict the developmental course of the neurologically impaired patient is necessary to assess treatment outcomes aimed at the brain. Thirteen intravenous enzyme replacement therapy-treated Japanese patients with neuronopathic MPSII who had mutation analysis were followed on one standard measure of cognitive development over time. Six children in Group MS had missense mutations and 7 children in Group NT had null type mutations such as deletions, recombination with the pseudogene, and nonsense mutations. The patients as a whole demonstrated cognitive growth until about 36–42 months of age, followed by a plateau in development. The mean age equivalent score at age 3 was similar to that at age 6. While the decline was slow for the entire group, the patients in Group NT showed a more rapid decline than those in Group MS. Two patients with deletions showed decline to a very low level by age 5. The long plateau in cognitive development in patents with MPS II was substantiated and was consistent with other studies. This is the first demonstration that different mutation types within the neuronopathic MPS II patients are associated with different rates of decline. We also were able to identify the chronological age before which a trial would need to start in order to maintain cognitive growth and a ceiling beyond which a relatively normal outcome would not be likely. |
---|