Cargando…
The Role of Motor and Environmental Visual Rhythms in Structuring Auditory Cortical Excitability
Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394914/ https://www.ncbi.nlm.nih.gov/pubmed/32738615 http://dx.doi.org/10.1016/j.isci.2020.101374 |
Sumario: | Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was to investigate the properties of motor-initiated entrainment in the auditory system using a prominent visual motor sampling pattern in primates, saccades. Second, we wanted to determine whether/how motor-initiated entrainment interacts with visual environmental entrainment. We examined laminar profiles of neuronal ensemble activity in primary auditory cortex and found that whereas motor-initiated entrainment has a suppressive effect, visual environmental entrainment has an enhancive effect. We also found that these processes are temporally coupled, and their temporal relationship ensures that their effect on excitability is complementary rather than interfering. Altogether, our results demonstrate that motor and sensory systems continuously interact in orchestrating the brain's context for the optimal sampling of our multisensory environment. |
---|