Cargando…

A Cellular Automata Model of Oncolytic Virotherapy in Pancreatic Cancer

Oncolytic virotherapy is known as a new treatment to employ less virulent viruses to specifically target and damage cancer cells. This work presents a cellular automata model of oncolytic virotherapy with an application to pancreatic cancer. The fundamental biomedical processes (like cell proliferat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, J., Weihs, D., Vermolen, F. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395005/
https://www.ncbi.nlm.nih.gov/pubmed/32737595
http://dx.doi.org/10.1007/s11538-020-00780-5
Descripción
Sumario:Oncolytic virotherapy is known as a new treatment to employ less virulent viruses to specifically target and damage cancer cells. This work presents a cellular automata model of oncolytic virotherapy with an application to pancreatic cancer. The fundamental biomedical processes (like cell proliferation, mutation, apoptosis) are modeled by the use of probabilistic principles. The migration of injected viruses (as therapy) is modeled by diffusion through the tissue. The resulting diffusion–reaction equation with smoothed point viral sources is discretized by the finite difference method and integrated by the IMEX approach. Furthermore, Monte Carlo simulations are done to quantitatively evaluate the correlations between various input parameters and numerical results. As we expected, our model is able to simulate the pancreatic cancer growth at early stages, which is calibrated with experimental results. In addition, the model can be used to predict and evaluate the therapeutic effect of oncolytic virotherapy.