Cargando…
Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning
Artificial intelligence has recently made a disruptive impact in medical imaging by successfully automatizing expert-level diagnostic tasks. However, replicating human-made decisions may inherently be biased by the fallible and dogmatic nature of human experts, in addition to requiring prohibitive a...
Autores principales: | Waldstein, Sebastian M., Seeböck, Philipp, Donner, René, Sadeghipour, Amir, Bogunović, Hrvoje, Osborne, Aaron, Schmidt-Erfurth, Ursula |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395081/ https://www.ncbi.nlm.nih.gov/pubmed/32737379 http://dx.doi.org/10.1038/s41598-020-69814-1 |
Ejemplares similares
-
Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
por: Vogl, Wolf-Dieter, et al.
Publicado: (2021) -
Point-to-point associations of drusen and hyperreflective foci volumes with retinal sensitivity in non-exudative age-related macular degeneration
por: Reiter, Gregor S., et al.
Publicado: (2023) -
Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning
por: Orlando, José Ignacio, et al.
Publicado: (2020) -
Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning
por: Waldstein, Sebastian M., et al.
Publicado: (2017) -
Few-shot out-of-distribution detection for automated screening in retinal OCT images using deep learning
por: Araújo, Teresa, et al.
Publicado: (2023)