Cargando…

Néel-type skyrmion in WTe(2)/Fe(3)GeTe(2) van der Waals heterostructure

The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yingying, Zhang, Senfu, Zhang, Junwei, Wang, Wei, Zhu, Yang Lin, Hu, Jin, Yin, Gen, Wong, Kin, Fang, Chi, Wan, Caihua, Han, Xiufeng, Shao, Qiming, Taniguchi, Takashi, Watanabe, Kenji, Zang, Jiadong, Mao, Zhiqiang, Zhang, Xixiang, Wang, Kang L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395126/
https://www.ncbi.nlm.nih.gov/pubmed/32737289
http://dx.doi.org/10.1038/s41467-020-17566-x
Descripción
Sumario:The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe(2)/Fe(3)GeTe(2) interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m(−2). This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.