Cargando…

Adjuvant therapy by high-speed burr may cause intraoperative bone tumor seeding: an animal study

BACKGROUND: Bone tumors are often treated with intralesional curettage. High-speed burring, an adjuvant therapy, was performed to maximize the tumor cell killing; however, tumor recurrence might still occur, which may be caused by residual tumor or local tumor spread during surgery. METHODS: A porci...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Pai-Han, Wu, Chia-Lun, Chen, Chao-Ming, Wang, Jir-You, Wu, Po-Kuei, Chen, Wei-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395403/
https://www.ncbi.nlm.nih.gov/pubmed/32736546
http://dx.doi.org/10.1186/s12891-020-03544-3
Descripción
Sumario:BACKGROUND: Bone tumors are often treated with intralesional curettage. High-speed burring, an adjuvant therapy, was performed to maximize the tumor cell killing; however, tumor recurrence might still occur, which may be caused by residual tumor or local tumor spread during surgery. METHODS: A porcine cadaver (femur) was utilized to determine whether the use of a high-speed burr causes bone cement spray. To mimic residual tumor after curettage, luminescent cement was smeared on two locations of the bone cavity, the wall and the bottom. The cavity in the femoral bone was then placed in the middle of a sheet of drawing paper featuring 10 cm, 20 cm, and 30 cm concentric circles. The luminescent cement was then burred totally with a high-speed burr. RESULTS: The intensity of the area in the wall in circle I was 72.6% ± 5.8%; within circle II, it was 22.1% ± 4.2%; and within circle III, it was 5.4% ± 1.5%. The intensity of the area within the bottom of the femoral bone within circle I was 66.5% ± 6.1%, within circle II was 28.1 ± 4.8%, and within circle III, it was 5.4% ± 1.4%. The amount of luminescent cement seeding decreased with distance, but there was no difference while burring at different locations of the bone cavity. Under the handpiece cover, a greater amount of cement spray was retained in circle I during burring of the cement in the bottom of the cavity and less was sprayed out in circle III. CONCLUSIONS: High-speed burring may cause explosive bone cement spray, which could extend to 20 cm. The intensities of spray did not decrease, even when the handpiece cover was used. The wide range of bone cement spray caused by high-speed burr was inspected in this pilot study, which may lead to tumor seeding. LEVEL OF EVIDENCE: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.