Cargando…
Signatures of co-deregulated genes and their transcriptional regulators in colorectal cancer
The deregulated genes in colorectal cancer (CRC) vary significantly across different studies. Thus, a systems biology approach is needed to identify the co-deregulated genes (co-DEGs), explore their molecular networks, and spot the major hub proteins within these networks. We reanalyzed 19 GEO gene...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395738/ https://www.ncbi.nlm.nih.gov/pubmed/32737302 http://dx.doi.org/10.1038/s41540-020-00144-8 |
Sumario: | The deregulated genes in colorectal cancer (CRC) vary significantly across different studies. Thus, a systems biology approach is needed to identify the co-deregulated genes (co-DEGs), explore their molecular networks, and spot the major hub proteins within these networks. We reanalyzed 19 GEO gene expression profiles to identify and annotate CRC versus normal signatures, single-gene perturbation, and single-drug perturbation signatures. We identified the co-DEGs across different studies, their upstream regulating kinases and transcription factors (TFs). Connectivity Map was used to identify likely repurposing drugs against CRC within each group. The functional changes of the co-upregulated genes in the first category were mainly associated with negative regulation of transforming growth factor β production and glomerular epithelial cell differentiation; whereas the co-downregulated genes were enriched in cotranslational protein targeting to the membrane. We identified 17 hub proteins across the co-upregulated genes and 18 hub proteins across the co-downregulated genes, composed of well-known TFs (MYC, TCF3, PML) and kinases (CSNK2A1, CDK1/4, MAPK14), and validated most of them using GEPIA2 and HPA, but also through two signature gene lists composed of the co-up and co-downregulated genes. We further identified a list of repurposing drugs that can potentially target the co-DEGs in CRC, including camptothecin, neostigmine bromide, emetine, remoxipride, cephaeline, thioridazine, and omeprazole. Similar analyses were performed in the co-DEG signatures in single-gene or drug perturbation experiments in CRC. MYC, PML, CDKs, CSNK2A1, and MAPKs were common hub proteins among all studies. Overall, we identified the critical genes in CRC and we propose repurposing drugs that could be used against them. |
---|