Cargando…
Explainable artificial intelligence model to predict acute critical illness from electronic health records
Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on manually calculated screening metrics that simply weigh these parameters, such as early warning scores (EWS). The...
Autores principales: | Lauritsen, Simon Meyer, Kristensen, Mads, Olsen, Mathias Vassard, Larsen, Morten Skaarup, Lauritsen, Katrine Meyer, Jørgensen, Marianne Johansson, Lange, Jeppe, Thiesson, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395744/ https://www.ncbi.nlm.nih.gov/pubmed/32737308 http://dx.doi.org/10.1038/s41467-020-17431-x |
Ejemplares similares
-
Using Explainable Artificial Intelligence to Predict Potentially Preventable Hospitalizations: A Population-Based Cohort Study in Denmark
por: Riis, Anders Hammerich, et al.
Publicado: (2023) -
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
por: Lauritsen, Simon Meyer, et al.
Publicado: (2021) -
Cohort profile: CROSS-TRACKS: a population-based open cohort across healthcare sectors in Denmark
por: Riis, Anders Hammerich, et al.
Publicado: (2020) -
Automated artificial intelligence‐based system for clinical follow‐up of patients with age‐related macular degeneration
por: Potapenko, Ivan, et al.
Publicado: (2022) -
Noncontact atomic force microscopy study of the spinel MgAl(2)O(4)(111) surface
por: Rasmussen, Morten K, et al.
Publicado: (2012)