Cargando…
Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation
BACKGROUND: Convolutional neural networks (CNNs) have been extensively applied to two-dimensional (2D) medical image segmentation, yielding excellent performance. However, their application to three-dimensional (3D) nodule segmentation remains a challenge. METHODS: In this study, we propose a multi-...
Autores principales: | Dong, Xianling, Xu, Shiqi, Liu, Yanli, Wang, Aihui, Saripan, M. Iqbal, Li, Li, Zhang, Xiaolei, Lu, Lijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395980/ https://www.ncbi.nlm.nih.gov/pubmed/32738913 http://dx.doi.org/10.1186/s40644-020-00331-0 |
Ejemplares similares
-
Deep learning PET/CT‐based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer
por: Zhang, Xiaolei, et al.
Publicado: (2023) -
Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning
por: Usman, Muhammad, et al.
Publicado: (2020) -
Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring
por: Moghbel, Mehrdad, et al.
Publicado: (2016) -
Automatic liver segmentation on Computed Tomography using random walkers for treatment planning
por: Moghbel, Mehrdad, et al.
Publicado: (2016) -
Design of lung nodules segmentation and recognition algorithm based on deep learning
por: Yu, Hui, et al.
Publicado: (2021)