Cargando…

Ginsenoside Rg1 Drives Stimulations of Timosaponin AIII-Induced Anticancer Effects in Human Osteosarcoma Cells

A ginsenoside Rg1 is an active compound extracted from the stem and/or root of ginseng. Rg1 has been known to affect various human organ systems including the immune, cardiovascular, and nervous systems with its pharmacological effects. Timosaponin AIII (TA3) is a type of spirostanol saponins that a...

Descripción completa

Detalles Bibliográficos
Autor principal: Lee, Sang Yeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396057/
https://www.ncbi.nlm.nih.gov/pubmed/32774433
http://dx.doi.org/10.1155/2020/8980124
Descripción
Sumario:A ginsenoside Rg1 is an active compound extracted from the stem and/or root of ginseng. Rg1 has been known to affect various human organ systems including the immune, cardiovascular, and nervous systems with its pharmacological effects. Timosaponin AIII (TA3) is a type of spirostanol saponins that are the major compounds of Anemarrhena asphodeloides. TA3 exerts anticancer effects in various human cancers, and the effects include attenuations of cancer cell migration and induction of apoptosis. In this study, I report that Rg1 drives the stimulation of TA3-induced cytotoxic effects in MG63 human osteosarcoma cells. Rg1 stimulates TA3-induced apoptosis in MG63 cells via selective intensification of caspase-3 activation. Rg1 and TA3 synergistically induced antimetastatic effects such as attenuation of MG63 cell migration and inhibitions of matrix metalloproteinases (MMP-2 and MMP-9). Rg1 and TA3 synergistically suppressed JNK, p38, ERK, β-catenin, and CREB signaling, which are key regulators of cancer metastasis. Finally, the synergistic anticancer effects of Rg1 and TA3 were also observed in U2OS human osteosarcoma cells, and this may indicate that the synergy is not limited specifically to MG63 cells. The results presented here suggest that the combinatorial use of Rg1 and TA3 may be a promising way to develop an effective antiosteosarcoma agent.