Cargando…
Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography
PURPOSE: To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images. METHODS: A total of 463 volumes from 380 eyes were acquired usi...
Autores principales: | Heisler, Morgan, Karst, Sonja, Lo, Julian, Mammo, Zaid, Yu, Timothy, Warner, Simon, Maberley, David, Beg, Mirza Faisal, Navajas, Eduardo V., Sarunic, Marinko V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396168/ https://www.ncbi.nlm.nih.gov/pubmed/32818081 http://dx.doi.org/10.1167/tvst.9.2.20 |
Ejemplares similares
-
Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning
por: Lo, Julian, et al.
Publicado: (2020) -
Evaluating Signs of Microangiopathy Secondary to Diabetes in Different Areas of the Retina with Swept Source OCTA
por: Karst, Sonja G., et al.
Publicado: (2020) -
Effects of Myopia and Glaucoma on the Neural Canal and Lamina Cribrosa Using Optical Coherence Tomography
por: Lee, Sieun, et al.
Publicado: (2023) -
Quantifying Variability in Longitudinal Peripapillary RNFL and Choroidal Layer Thickness Using Surface Based Registration of OCT Images
por: Lee, Sieun, et al.
Publicado: (2017) -
Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography
por: Young, Mei, et al.
Publicado: (2011)