Cargando…
Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus
PURPOSE: Keratoconus (KC) represents one of the leading causes of corneal transplantation worldwide. Detecting subclinical KC would lead to better management to avoid the need for corneal grafts, but the condition is clinically challenging to diagnose. We wished to compare eight commonly used machin...
Autores principales: | Cao, Ke, Verspoor, Karin, Sahebjada, Srujana, Baird, Paul N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396174/ https://www.ncbi.nlm.nih.gov/pubmed/32818085 http://dx.doi.org/10.1167/tvst.9.2.24 |
Ejemplares similares
-
Accuracy of Machine Learning Assisted Detection of Keratoconus: A Systematic Review and Meta-Analysis
por: Cao, Ke, et al.
Publicado: (2022) -
Do age-related macular degeneration genes show association with keratoconus?
por: Cao, Ke, et al.
Publicado: (2019) -
Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review
por: Maile, Howard, et al.
Publicado: (2021) -
Keratoconus International Consortium (KIC)- advancing keratoconus research
por: Sahebjada, Srujana, et al.
Publicado: (2023) -
Association of the Hepatocyte Growth Factor Gene with Keratoconus in an Australian Population
por: Sahebjada, Srujana, et al.
Publicado: (2014)