Cargando…
Artificial Intelligence to Stratify Severity of Age-Related Macular Degeneration (AMD) and Predict Risk of Progression to Late AMD
PURPOSE: To build and validate artificial intelligence (AI)-based models for AMD screening and for predicting late dry and wet AMD progression within 1 and 2 years. METHODS: The dataset of the Age-related Eye Disease Study (AREDS) was used to train and validate our prediction model. External validat...
Autores principales: | Bhuiyan, Alauddin, Wong, Tien Yin, Ting, Daniel Shu Wei, Govindaiah, Arun, Souied, Eric H., Smith, R. Theodore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396183/ https://www.ncbi.nlm.nih.gov/pubmed/32818086 http://dx.doi.org/10.1167/tvst.9.2.25 |
Ejemplares similares
-
Optimized Prediction Models from Fundus Imaging and Genetics for Late Age-Related Macular Degeneration
por: Govindaiah, Arun, et al.
Publicado: (2021) -
Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE
por: Fisher, Cody R., et al.
Publicado: (2018) -
Combined automated screening for age-related macular degeneration and diabetic retinopathy in primary care settings
por: Bhuiyan, Alauddin, et al.
Publicado: (2021) -
Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD)
por: García-Onrubia, Luis, et al.
Publicado: (2020) -
An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
por: Bhuiyan, Alauddin, et al.
Publicado: (2021)