Cargando…
Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening
Systematic screening for diabetic retinopathy (DR) has been widely recommended for early detection in patients with diabetes to address preventable vision loss. However, substantial manpower and financial resources are required to deploy opportunistic screening and transition to systematic DR screen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396187/ https://www.ncbi.nlm.nih.gov/pubmed/32818083 http://dx.doi.org/10.1167/tvst.9.2.22 |
_version_ | 1783565539626450944 |
---|---|
author | Xie, Yuchen Gunasekeran, Dinesh V. Balaskas, Konstantinos Keane, Pearse A. Sim, Dawn A. Bachmann, Lucas M. Macrae, Carl Ting, Daniel S. W. |
author_facet | Xie, Yuchen Gunasekeran, Dinesh V. Balaskas, Konstantinos Keane, Pearse A. Sim, Dawn A. Bachmann, Lucas M. Macrae, Carl Ting, Daniel S. W. |
author_sort | Xie, Yuchen |
collection | PubMed |
description | Systematic screening for diabetic retinopathy (DR) has been widely recommended for early detection in patients with diabetes to address preventable vision loss. However, substantial manpower and financial resources are required to deploy opportunistic screening and transition to systematic DR screening programs. The advent of artificial intelligence (AI) technologies may improve access and reduce the financial burden for DR screening while maintaining comparable or enhanced clinical effectiveness. To deploy an AI-based DR screening program in a real-world setting, it is imperative that health economic assessment (HEA) and patient safety analyses are conducted to guide appropriate allocation of resources and design safe, reliable systems. Few studies published to date include these considerations when integrating AI-based solutions into DR screening programs. In this article, we provide an overview of the current state-of-the-art of AI technology (focusing on deep learning systems), followed by an appraisal of existing literature on the applications of AI in ophthalmology. We also discuss practical considerations that drive the development of a successful DR screening program, such as the implications of false-positive or false-negative results and image gradeability. Finally, we examine different plausible methods for HEA and safety analyses that can be used to assess concerns regarding AI-based screening. |
format | Online Article Text |
id | pubmed-7396187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-73961872020-08-17 Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening Xie, Yuchen Gunasekeran, Dinesh V. Balaskas, Konstantinos Keane, Pearse A. Sim, Dawn A. Bachmann, Lucas M. Macrae, Carl Ting, Daniel S. W. Transl Vis Sci Technol Special Issue Systematic screening for diabetic retinopathy (DR) has been widely recommended for early detection in patients with diabetes to address preventable vision loss. However, substantial manpower and financial resources are required to deploy opportunistic screening and transition to systematic DR screening programs. The advent of artificial intelligence (AI) technologies may improve access and reduce the financial burden for DR screening while maintaining comparable or enhanced clinical effectiveness. To deploy an AI-based DR screening program in a real-world setting, it is imperative that health economic assessment (HEA) and patient safety analyses are conducted to guide appropriate allocation of resources and design safe, reliable systems. Few studies published to date include these considerations when integrating AI-based solutions into DR screening programs. In this article, we provide an overview of the current state-of-the-art of AI technology (focusing on deep learning systems), followed by an appraisal of existing literature on the applications of AI in ophthalmology. We also discuss practical considerations that drive the development of a successful DR screening program, such as the implications of false-positive or false-negative results and image gradeability. Finally, we examine different plausible methods for HEA and safety analyses that can be used to assess concerns regarding AI-based screening. The Association for Research in Vision and Ophthalmology 2020-04-13 /pmc/articles/PMC7396187/ /pubmed/32818083 http://dx.doi.org/10.1167/tvst.9.2.22 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Special Issue Xie, Yuchen Gunasekeran, Dinesh V. Balaskas, Konstantinos Keane, Pearse A. Sim, Dawn A. Bachmann, Lucas M. Macrae, Carl Ting, Daniel S. W. Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening |
title | Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening |
title_full | Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening |
title_fullStr | Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening |
title_full_unstemmed | Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening |
title_short | Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening |
title_sort | health economic and safety considerations for artificial intelligence applications in diabetic retinopathy screening |
topic | Special Issue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396187/ https://www.ncbi.nlm.nih.gov/pubmed/32818083 http://dx.doi.org/10.1167/tvst.9.2.22 |
work_keys_str_mv | AT xieyuchen healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT gunasekerandineshv healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT balaskaskonstantinos healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT keanepearsea healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT simdawna healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT bachmannlucasm healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT macraecarl healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening AT tingdanielsw healtheconomicandsafetyconsiderationsforartificialintelligenceapplicationsindiabeticretinopathyscreening |