Cargando…
Differentiation of Diabetic Status Using Statistical and Machine Learning Techniques on Optical Coherence Tomography Angiography Images
PURPOSE: To investigate the potential of statistical and machine learning approaches to determine the diabetic status of patients from optical coherence tomography angiography (OCT-A) images. METHODS: This was a retrospective cross-sectional observational study based at Manchester Royal Eye Hospital...
Autores principales: | Aslam, Tariq Mehmood, Hoyle, David Charles, Puri, Vikram, Bento, Goncalo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396193/ https://www.ncbi.nlm.nih.gov/pubmed/32818090 http://dx.doi.org/10.1167/tvst.9.4.2 |
Ejemplares similares
-
Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques
por: Yasser, Ibrahim, et al.
Publicado: (2022) -
Optical Coherence Tomography Angiography
por: Gao, Simon S., et al.
Publicado: (2016) -
Optical Coherence Tomography Angiography
por: Schwartz, Stephen G., et al.
Publicado: (2018) -
Optical coherence tomography angiography
por: Spaide, Richard F., et al.
Publicado: (2017) -
Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis
por: Chalkias, Ioannis-Nikolaos, et al.
Publicado: (2022)