Cargando…
Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms
PURPOSE: To compare performance of independently developed deep learning algorithms for detecting glaucoma from fundus photographs and to evaluate strategies for incorporating new data into models. METHODS: Two fundus photograph datasets from the Diagnostic Innovations in Glaucoma Study/African Desc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396194/ https://www.ncbi.nlm.nih.gov/pubmed/32818088 http://dx.doi.org/10.1167/tvst.9.2.27 |