Cargando…
Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges
Autores principales: | Peng, Shichun, Spetsieris, Phoebe G., Eidelberg, David, Ma, Yilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396243/ https://www.ncbi.nlm.nih.gov/pubmed/32793653 http://dx.doi.org/10.21037/atm.2020.04.33 |
Ejemplares similares
-
Parkinson’s disease progression: Increasing expression of an invariant common core subnetwork
por: Spetsieris, Phoebe G., et al.
Publicado: (2023) -
Spectral guided sparse inverse covariance estimation of metabolic networks in Parkinson’s disease
por: Spetsieris, Phoebe G., et al.
Publicado: (2020) -
Automated differential diagnosis of dementia syndromes using FDG PET and machine learning
por: Perovnik, Matej, et al.
Publicado: (2022) -
Quantifying Significance of Topographical Similarities of Disease-Related Brain Metabolic Patterns
por: Ko, Ji Hyun, et al.
Publicado: (2014) -
Challenges and Promises of PET Radiomics
por: Cook, Gary J.R., et al.
Publicado: (2018)