Cargando…

Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence

Photobacterium damselae subsp. damselae (Pdd), an important pathogen for marine animals, is also an opportunistic human pathogen that can cause fatal necrotizing fasciitis. The regulatory changes triggered by the temperature shift experienced by this marine pathogen upon entering the human body, are...

Descripción completa

Detalles Bibliográficos
Autores principales: Matanza, Xosé M., Osorio, Carlos R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396505/
https://www.ncbi.nlm.nih.gov/pubmed/32849395
http://dx.doi.org/10.3389/fmicb.2020.01771
_version_ 1783565597192224768
author Matanza, Xosé M.
Osorio, Carlos R.
author_facet Matanza, Xosé M.
Osorio, Carlos R.
author_sort Matanza, Xosé M.
collection PubMed
description Photobacterium damselae subsp. damselae (Pdd), an important pathogen for marine animals, is also an opportunistic human pathogen that can cause fatal necrotizing fasciitis. The regulatory changes triggered by the temperature shift experienced by this marine pathogen upon entering the human body, are completely unknown. Here we report an RNA-seq approach combined with phenotypical assays to study the response of Pdd to cultivation at 37°C in comparison to 25°C. We found that cultivation of a Pdd highly virulent strain for fish and mice, RM-71, at 37°C, initially enhanced bacterial growth in comparison to 25°C as evidenced by the increase in optical density. However, cells were found to undergo a progressive loss of viability after 6 h cultivation at 37°C, and no viable cells could be detected from 30 h cultures at 37°C. In contrast, at 25°C, viable cell counts achieved the highest values at 30 h cultivation. Cells grown at 25°C showed normal rod morphology by scanning electron microscopy analysis whereas cells grown at 37°C exhibited chain-like structures and aberrant long shapes suggesting a defect in daughter cell separation and in septum formation. Cells grown at 37°C also exhibited reduced tolerance to benzylpenicillin. Using a RNA-seq approach we discovered that growth at 37°C triggered a heat-shock response, whereas genes involved in motility and virulence were repressed including iron acquisition systems, the type two secretion system, and damselysin toxin, a major virulence factor of Pdd. Human isolates did not exhibit advantage growing at 37°C compared to fish isolates, and comparative genomics did not reveal gene markers specific of human isolates, suggesting that any Pdd genotype existing in the marine environment might potentially cause disease in humans. Altogether, these data indicate that the potential of Pdd to cause disease in humans is an accidental condition rather than a selected trait, and that human body temperature constitutes a stressful condition for Pdd. This study provides the first transcriptome profile of Pdd exposed at human body temperature, and unveils a number of candidate molecular targets for prevention and control of human infections caused by this pathogen.
format Online
Article
Text
id pubmed-7396505
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-73965052020-08-25 Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence Matanza, Xosé M. Osorio, Carlos R. Front Microbiol Microbiology Photobacterium damselae subsp. damselae (Pdd), an important pathogen for marine animals, is also an opportunistic human pathogen that can cause fatal necrotizing fasciitis. The regulatory changes triggered by the temperature shift experienced by this marine pathogen upon entering the human body, are completely unknown. Here we report an RNA-seq approach combined with phenotypical assays to study the response of Pdd to cultivation at 37°C in comparison to 25°C. We found that cultivation of a Pdd highly virulent strain for fish and mice, RM-71, at 37°C, initially enhanced bacterial growth in comparison to 25°C as evidenced by the increase in optical density. However, cells were found to undergo a progressive loss of viability after 6 h cultivation at 37°C, and no viable cells could be detected from 30 h cultures at 37°C. In contrast, at 25°C, viable cell counts achieved the highest values at 30 h cultivation. Cells grown at 25°C showed normal rod morphology by scanning electron microscopy analysis whereas cells grown at 37°C exhibited chain-like structures and aberrant long shapes suggesting a defect in daughter cell separation and in septum formation. Cells grown at 37°C also exhibited reduced tolerance to benzylpenicillin. Using a RNA-seq approach we discovered that growth at 37°C triggered a heat-shock response, whereas genes involved in motility and virulence were repressed including iron acquisition systems, the type two secretion system, and damselysin toxin, a major virulence factor of Pdd. Human isolates did not exhibit advantage growing at 37°C compared to fish isolates, and comparative genomics did not reveal gene markers specific of human isolates, suggesting that any Pdd genotype existing in the marine environment might potentially cause disease in humans. Altogether, these data indicate that the potential of Pdd to cause disease in humans is an accidental condition rather than a selected trait, and that human body temperature constitutes a stressful condition for Pdd. This study provides the first transcriptome profile of Pdd exposed at human body temperature, and unveils a number of candidate molecular targets for prevention and control of human infections caused by this pathogen. Frontiers Media S.A. 2020-07-24 /pmc/articles/PMC7396505/ /pubmed/32849395 http://dx.doi.org/10.3389/fmicb.2020.01771 Text en Copyright © 2020 Matanza and Osorio. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Matanza, Xosé M.
Osorio, Carlos R.
Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence
title Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence
title_full Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence
title_fullStr Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence
title_full_unstemmed Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence
title_short Exposure of the Opportunistic Marine Pathogen Photobacterium damselae subsp. damselae to Human Body Temperature Is a Stressful Condition That Shapes the Transcriptome, Viability, Cell Morphology, and Virulence
title_sort exposure of the opportunistic marine pathogen photobacterium damselae subsp. damselae to human body temperature is a stressful condition that shapes the transcriptome, viability, cell morphology, and virulence
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396505/
https://www.ncbi.nlm.nih.gov/pubmed/32849395
http://dx.doi.org/10.3389/fmicb.2020.01771
work_keys_str_mv AT matanzaxosem exposureoftheopportunisticmarinepathogenphotobacteriumdamselaesubspdamselaetohumanbodytemperatureisastressfulconditionthatshapesthetranscriptomeviabilitycellmorphologyandvirulence
AT osoriocarlosr exposureoftheopportunisticmarinepathogenphotobacteriumdamselaesubspdamselaetohumanbodytemperatureisastressfulconditionthatshapesthetranscriptomeviabilitycellmorphologyandvirulence