Cargando…
Identification of Alzheimer's EEG With a WVG Network-Based Fuzzy Learning Approach
A novel analytical framework combined fuzzy learning and complex network approaches is proposed for the identification of Alzheimer's disease (AD) with multichannel scalp-recorded electroencephalograph (EEG) signals. Weighted visibility graph (WVG) algorithm is first applied to transform each c...
Autores principales: | Yu, Haitao, Zhu, Lin, Cai, Lihui, Wang, Jiang, Liu, Jing, Wang, Ruofan, Zhang, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396629/ https://www.ncbi.nlm.nih.gov/pubmed/32848530 http://dx.doi.org/10.3389/fnins.2020.00641 |
Ejemplares similares
-
Functional Integration and Segregation in Multiplex Brain Networks for Alzheimer's Disease
por: Cai, Lihui, et al.
Publicado: (2020) -
Identification of Epileptic EEG Signals Through TSK Transfer Learning Fuzzy System
por: Zheng, Zhaoliang, et al.
Publicado: (2021) -
A novel framework of MOPSO-GDM in recognition of Alzheimer's EEG-based functional network
por: Wang, Ruofan, et al.
Publicado: (2023) -
A deep learning framework for identifying Alzheimer's disease using fMRI-based brain network
por: Wang, Ruofan, et al.
Publicado: (2023) -
Robust Learning Control for Shipborne Manipulator With Fuzzy Neural Network
por: Xu, Zhiqiang, et al.
Publicado: (2019)