Cargando…
Bayesian Multi-objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neural Network Accelerator Design
In resource-constrained environments, such as low-power edge devices and smart sensors, deploying a fast, compact, and accurate intelligent system with minimum energy is indispensable. Embedding intelligence can be achieved using neural networks on neuromorphic hardware. Designing such networks woul...
Autores principales: | Parsa, Maryam, Mitchell, John P., Schuman, Catherine D., Patton, Robert M., Potok, Thomas E., Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396641/ https://www.ncbi.nlm.nih.gov/pubmed/32848531 http://dx.doi.org/10.3389/fnins.2020.00667 |
Ejemplares similares
-
Hyperparameter Optimization of Bayesian Neural Network Using Bayesian Optimization and Intelligent Feature Engineering for Load Forecasting
por: Zulfiqar, M., et al.
Publicado: (2022) -
Disease prediction via Bayesian hyperparameter optimization and ensemble learning
por: Gao, Liyuan, et al.
Publicado: (2020) -
Parsimonious Optimization of Multitask Neural Network Hyperparameters
por: Valsecchi, Cecile, et al.
Publicado: (2021) -
Accelerating Hyperparameter Optimization of Deep Neural Network via Progressive Multi-Fidelity Evaluation
por: Zhu, Guanghui, et al.
Publicado: (2020) -
Multi-objective hyperparameter optimization on gradient-boosting for breast cancer detection
por: Singh, Priya, et al.
Publicado: (2023)