Cargando…
Deep learning for automated classification of tuberculosis-related chest X-Ray: dataset distribution shift limits diagnostic performance generalizability
BACKGROUND: Machine learning has been an emerging tool for various aspects of infectious diseases including tuberculosis surveillance and detection. However, the World Health Organization (WHO) provided no recommendations on using computer-aided tuberculosis detection software because of a small num...
Autores principales: | Sathitratanacheewin, Seelwan, Sunanta, Panasun, Pongpirul, Krit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396903/ https://www.ncbi.nlm.nih.gov/pubmed/32775757 http://dx.doi.org/10.1016/j.heliyon.2020.e04614 |
Ejemplares similares
-
1992. Automated Classification of Pulmonary Tuberculosis-Associated Radiograph in the US Hospital-Scale Chest X-ray Database by Using Deep Convolutional Neural Network
por: Pongpirul, Krit, et al.
Publicado: (2018) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023) -
Dataset’s chemical diversity limits the generalizability of machine learning predictions
por: Glavatskikh, Marta, et al.
Publicado: (2019) -
Chest X-ray Classification Using Deep Learning for Automated COVID-19 Screening
por: Shelke, Ankita, et al.
Publicado: (2021) -
Immunogenicity, safety and reactogenicity of a heterogeneous booster following the CoronaVac inactivated SARS-CoV-2 vaccine in patients with SLE: a case series
por: Assawasaksakul, Theerada, et al.
Publicado: (2021)