Cargando…
Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation
As single-cell RNA sequencing technologies mature, massive gene expression profiles can be obtained. Consequently, cell clustering and annotation become two crucial and fundamental procedures affecting other specific downstream analyses. Most existing single-cell RNA-seq (scRNA-seq) data clustering...
Autores principales: | Chen, Liang, Zhai, Yuyao, He, Qiuyan, Wang, Weinan, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397036/ https://www.ncbi.nlm.nih.gov/pubmed/32674393 http://dx.doi.org/10.3390/genes11070792 |
Ejemplares similares
-
Deep soft K-means clustering with self-training for single-cell RNA sequence data
por: Chen, Liang, et al.
Publicado: (2020) -
Supervised and unsupervised learning for data science
por: Berry, Michael W, et al.
Publicado: (2020) -
Quantitative neuronal morphometry by supervised and unsupervised learning
por: Bijari, Kayvan, et al.
Publicado: (2021) -
Unsupervised Few-Shot Feature Learning via Self-Supervised Training
por: Ji, Zilong, et al.
Publicado: (2020) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014)