Cargando…
Thermally Induced Diffusion and Restructuring of Iron Triade (Fe, Co, Ni) Nanoparticles Passivated by Several Layers of Gold
[Image: see text] The temperature-induced structural changes of Fe–, Co–, and Ni–Au core–shell nanoparticles with diameters around 5 nm are studied via atomically resolved transmission electron microscopy. We observe structural transitions from local toward global energy minima induced by elevated t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397372/ https://www.ncbi.nlm.nih.gov/pubmed/32765801 http://dx.doi.org/10.1021/acs.jpcc.0c04561 |
Sumario: | [Image: see text] The temperature-induced structural changes of Fe–, Co–, and Ni–Au core–shell nanoparticles with diameters around 5 nm are studied via atomically resolved transmission electron microscopy. We observe structural transitions from local toward global energy minima induced by elevated temperatures. The experimental observations are accompanied by a computational modeling of all core–shell particles with either centralized or decentralized core positions. The embedded atom model is employed and further supported by density functional theory calculations. We provide a detailed comparison of vacancy formation energies obtained for all materials involved in order to explain the variations in the restructuring processes which we observe in temperature-programmed TEM studies of the particles. |
---|