Cargando…
Combining high throughput and high quality for cryo-electron microscopy data collection
Cryo-electron microscopy (cryo-EM) can be used to elucidate the 3D structure of macromolecular complexes. Driven by technological breakthroughs in electron-microscope and electron-detector development, coupled with improved image-processing procedures, it is now possible to reach high resolution bot...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397495/ https://www.ncbi.nlm.nih.gov/pubmed/32744254 http://dx.doi.org/10.1107/S2059798320008347 |
Sumario: | Cryo-electron microscopy (cryo-EM) can be used to elucidate the 3D structure of macromolecular complexes. Driven by technological breakthroughs in electron-microscope and electron-detector development, coupled with improved image-processing procedures, it is now possible to reach high resolution both in single-particle analysis and in cryo-electron tomography and subtomogram-averaging approaches. As a consequence, the way in which cryo-EM data are collected has changed and new challenges have arisen in terms of microscope alignment, aberration correction and imaging parameters. This review describes how high-end data collection is performed at the EMBL Heidelberg cryo-EM platform, presenting recent microscope implementations that allow an increase in throughput while maintaining aberration-free imaging and the optimization of acquisition parameters to collect high-resolution data. |
---|