Cargando…

Nutrient removal from human fecal sludge digestate in full-scale biological filters

There is a great need for simple methods for digestate management for potential household sanitation systems based on anaerobic digestion of minimally diluted fecal waste in countries that lack safe sanitation. Herein, a full-scale three-stage filter for nitrogen and phosphorus removal from anaerobi...

Descripción completa

Detalles Bibliográficos
Autores principales: Forbis-Stokes, Aaron A., Miller, Graham H., Segretain, Armel, Rabarison, Felahasina, Andriambololona, Tojoniaina, Deshusses, Marc A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397500/
https://www.ncbi.nlm.nih.gov/pubmed/32512331
http://dx.doi.org/10.1016/j.chemosphere.2020.127219
_version_ 1783565787516108800
author Forbis-Stokes, Aaron A.
Miller, Graham H.
Segretain, Armel
Rabarison, Felahasina
Andriambololona, Tojoniaina
Deshusses, Marc A.
author_facet Forbis-Stokes, Aaron A.
Miller, Graham H.
Segretain, Armel
Rabarison, Felahasina
Andriambololona, Tojoniaina
Deshusses, Marc A.
author_sort Forbis-Stokes, Aaron A.
collection PubMed
description There is a great need for simple methods for digestate management for potential household sanitation systems based on anaerobic digestion of minimally diluted fecal waste in countries that lack safe sanitation. Herein, a full-scale three-stage filter for nitrogen and phosphorus removal from anaerobic digester effluent was implemented in Madagascar. It included a trickling filter with crushed charcoal (for aerobic nitrification), a submerged anaerobic filter with bamboo chips (for denitrification), and a submerged filter with scrap iron (for phosphorus removal). All filter materials were sourced locally. Three parallel replicate systems were operated in two sequential 8-week phases for a total of 16 continuous weeks. Though the influent feed was not as expected, with much of nitrogen in the feed coming in as organic N and not as NH(3)–N, the filters still removed 38–49% of total incoming nitrogen. The filters achieved high rates of nitrogen transformation along with removing solids (73–82% turbidity removal), chemical oxygen demand (67–75% removal), and phosphorus (31–50% removal). Overall, the reaction rates from this full-scale study were in line with previous lab-scale investigations with scaled-down systems, supporting their application in real-world scenarios. Based on this study, simple effluent filters can support nutrient removal for small-scale and onsite fecal sludge treatment systems.
format Online
Article
Text
id pubmed-7397500
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier Science Ltd
record_format MEDLINE/PubMed
spelling pubmed-73975002020-10-01 Nutrient removal from human fecal sludge digestate in full-scale biological filters Forbis-Stokes, Aaron A. Miller, Graham H. Segretain, Armel Rabarison, Felahasina Andriambololona, Tojoniaina Deshusses, Marc A. Chemosphere Article There is a great need for simple methods for digestate management for potential household sanitation systems based on anaerobic digestion of minimally diluted fecal waste in countries that lack safe sanitation. Herein, a full-scale three-stage filter for nitrogen and phosphorus removal from anaerobic digester effluent was implemented in Madagascar. It included a trickling filter with crushed charcoal (for aerobic nitrification), a submerged anaerobic filter with bamboo chips (for denitrification), and a submerged filter with scrap iron (for phosphorus removal). All filter materials were sourced locally. Three parallel replicate systems were operated in two sequential 8-week phases for a total of 16 continuous weeks. Though the influent feed was not as expected, with much of nitrogen in the feed coming in as organic N and not as NH(3)–N, the filters still removed 38–49% of total incoming nitrogen. The filters achieved high rates of nitrogen transformation along with removing solids (73–82% turbidity removal), chemical oxygen demand (67–75% removal), and phosphorus (31–50% removal). Overall, the reaction rates from this full-scale study were in line with previous lab-scale investigations with scaled-down systems, supporting their application in real-world scenarios. Based on this study, simple effluent filters can support nutrient removal for small-scale and onsite fecal sludge treatment systems. Elsevier Science Ltd 2020-10 /pmc/articles/PMC7397500/ /pubmed/32512331 http://dx.doi.org/10.1016/j.chemosphere.2020.127219 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Forbis-Stokes, Aaron A.
Miller, Graham H.
Segretain, Armel
Rabarison, Felahasina
Andriambololona, Tojoniaina
Deshusses, Marc A.
Nutrient removal from human fecal sludge digestate in full-scale biological filters
title Nutrient removal from human fecal sludge digestate in full-scale biological filters
title_full Nutrient removal from human fecal sludge digestate in full-scale biological filters
title_fullStr Nutrient removal from human fecal sludge digestate in full-scale biological filters
title_full_unstemmed Nutrient removal from human fecal sludge digestate in full-scale biological filters
title_short Nutrient removal from human fecal sludge digestate in full-scale biological filters
title_sort nutrient removal from human fecal sludge digestate in full-scale biological filters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397500/
https://www.ncbi.nlm.nih.gov/pubmed/32512331
http://dx.doi.org/10.1016/j.chemosphere.2020.127219
work_keys_str_mv AT forbisstokesaarona nutrientremovalfromhumanfecalsludgedigestateinfullscalebiologicalfilters
AT millergrahamh nutrientremovalfromhumanfecalsludgedigestateinfullscalebiologicalfilters
AT segretainarmel nutrientremovalfromhumanfecalsludgedigestateinfullscalebiologicalfilters
AT rabarisonfelahasina nutrientremovalfromhumanfecalsludgedigestateinfullscalebiologicalfilters
AT andriambololonatojoniaina nutrientremovalfromhumanfecalsludgedigestateinfullscalebiologicalfilters
AT deshussesmarca nutrientremovalfromhumanfecalsludgedigestateinfullscalebiologicalfilters