Cargando…
Generative Adversarial Domain Adaptation for Nucleus Quantification in Images of Tissue Immunohistochemically Stained for Ki-67
PURPOSE: We focus on the problem of scarcity of annotated training data for nucleus recognition in Ki-67 immunohistochemistry (IHC)–stained pancreatic neuroendocrine tumor (NET) images. We hypothesize that deep learning–based domain adaptation is helpful for nucleus recognition when image annotation...
Autores principales: | Zhang, Xuhong, Cornish, Toby C., Yang, Lin, Bennett, Tellen D., Ghosh, Debashis, Xing, Fuyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397778/ https://www.ncbi.nlm.nih.gov/pubmed/32730116 http://dx.doi.org/10.1200/CCI.19.00108 |
Ejemplares similares
-
Automated Ki-67 Quantification of Immunohistochemical Staining Image of Human Nasopharyngeal Carcinoma Xenografts
por: Shi, Peng, et al.
Publicado: (2016) -
Prognostic Value of Immunohistochemical Staining of p53, bcl-2, and Ki-67 in Small Cell Lung Cancer
por: Paik, Kwang Hyun, et al.
Publicado: (2006) -
Combination of Binary System with Ki67 Immunohistochemical Staining: a Reliable Grading Method for Oral Epithelial Dysplasia
por: Akafzadeh, Negar, et al.
Publicado: (2022) -
Immunohistochemical detection of Hsp90 and Ki-67 in pterygium
por: Sebastiá, Roberto, et al.
Publicado: (2013) -
Does immunohistochemical staining of P53, Ki 67 and cyclin A accurately predict Wilms tumor recurrence and survival?
por: Atwa, Ahmed M, et al.
Publicado: (2022)