Cargando…
Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data
BACKGROUND: The correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent be...
Autores principales: | Calgaro, Matteo, Romualdi, Chiara, Waldron, Levi, Risso, Davide, Vitulo, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398076/ https://www.ncbi.nlm.nih.gov/pubmed/32746888 http://dx.doi.org/10.1186/s13059-020-02104-1 |
Ejemplares similares
-
benchdamic: benchmarking of differential abundance methods for microbiome data
por: Calgaro, Matteo, et al.
Publicado: (2022) -
PsiNorm: a scalable normalization for single-cell RNA-seq data
por: Borella, Matteo, et al.
Publicado: (2021) -
NewWave: a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA-seq data
por: Agostinis, Federico, et al.
Publicado: (2022) -
Data and Statistical Methods To Analyze the Human Microbiome
por: Waldron, Levi
Publicado: (2018) -
signifinder enables the identification of tumor cell states and cancer expression signatures in bulk, single-cell and spatial transcriptomic data
por: Pirrotta, Stefania, et al.
Publicado: (2023)