Cargando…

Transcranial electrical stimulation motor-evoked potentials in a spinal cord ischaemia rabbit model

BACKGROUND: Spinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. Transcranial electrical stimulation motor-evoked potentials were measured to enable their use in future studies...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yucheng, Lv, Baotao, Song, Qimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398191/
https://www.ncbi.nlm.nih.gov/pubmed/32922927
http://dx.doi.org/10.1186/s41016-019-0174-7
Descripción
Sumario:BACKGROUND: Spinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. Transcranial electrical stimulation motor-evoked potentials were measured to enable their use in future studies on spinal cord ischaemia protection. METHODS: Thirty-three New Zealand rabbits were randomly divided into 6 groups. Transcranial electrical stimulation motor-evoked potentials were recorded before vascular ligation, 30 min after vascular ligation, and 2 days after vascular ligation. Motor functions were assessed after surgery and 2 days after vascular ligation. The specimens were taken 2 days after ligation for histopathologic observation. RESULTS: With increased numbers of ligations, a transient extension of the latency became clear, but there were no significant differences in the statistical analysis. Analysis of variance after ligation at the same time in each group and t tests before and after ligation (P > 0.05) were not significant. One or 2 ligations did not cause spinal cord ischaemic damage. There were no significant differences before and after ligation for the amplitude (P > 0.05). With increased numbers of ligations, the amplitude before and after ligation was gradually reduced in the 3–5 ligation groups (P < 0.05). CONCLUSIONS: Ligation of segmental spinal cord vessels on 1 or 2 levels did not cause ischaemic damage. Spinal cord ischaemia was observed after 3, 4, or 5 ligations. The amplitude was more sensitive to spinal cord ischaemia than latency. Spinal cord function can be predicted by early changes in the amplitude.