Cargando…
ACSS2-related autophagy has a dual impact on memory
Autophagy is an intracellular degenerative pathway which is responsible for neuronal survival. Under the condition of nutrient deprivation, autophagy can lead to dysfunction in memory consolidation. AMPK/mTOR pathway is currently the most studied autophagy mechanism, while recently researchers have...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398205/ https://www.ncbi.nlm.nih.gov/pubmed/32922914 http://dx.doi.org/10.1186/s41016-019-0162-y |
_version_ | 1783565916425945088 |
---|---|
author | Zhang, Hao Xiong, Zujian He, Qin Fan, Fan |
author_facet | Zhang, Hao Xiong, Zujian He, Qin Fan, Fan |
author_sort | Zhang, Hao |
collection | PubMed |
description | Autophagy is an intracellular degenerative pathway which is responsible for neuronal survival. Under the condition of nutrient deprivation, autophagy can lead to dysfunction in memory consolidation. AMPK/mTOR pathway is currently the most studied autophagy mechanism, while recently researchers have proved ACSS2 can also affect autophagy. ACSS2 is phosphorylated at Ser659 by AMPK and then forms a translocation complex with Importin α5 to translocate into the nucleus. This process interacts with TFEB, resulting in upregulated expression of lysosomal and autophagosomal genes. These upregulations inhibit synaptic plasticity and hence memory functions. On the other hand, ACSS2 is also recognized as a regulator of histone acetylation. After recruiting CBP/p300 and activating CBP’s HAT activity in the nucleus, ACSS2 maintains the level of localized histone acetylation by recapturing acetate from histone deacetylation to reform acetyl-CoA, providing substrates for HAT. The increase of histone acetylation locally enhanced immediate early gene transcription, including Egr2, Fos, Nr2f2, Sgk1, and Arc, to benefit neuronal plasticity and memory in many ways. |
format | Online Article Text |
id | pubmed-7398205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-73982052020-09-10 ACSS2-related autophagy has a dual impact on memory Zhang, Hao Xiong, Zujian He, Qin Fan, Fan Chin Neurosurg J Review Autophagy is an intracellular degenerative pathway which is responsible for neuronal survival. Under the condition of nutrient deprivation, autophagy can lead to dysfunction in memory consolidation. AMPK/mTOR pathway is currently the most studied autophagy mechanism, while recently researchers have proved ACSS2 can also affect autophagy. ACSS2 is phosphorylated at Ser659 by AMPK and then forms a translocation complex with Importin α5 to translocate into the nucleus. This process interacts with TFEB, resulting in upregulated expression of lysosomal and autophagosomal genes. These upregulations inhibit synaptic plasticity and hence memory functions. On the other hand, ACSS2 is also recognized as a regulator of histone acetylation. After recruiting CBP/p300 and activating CBP’s HAT activity in the nucleus, ACSS2 maintains the level of localized histone acetylation by recapturing acetate from histone deacetylation to reform acetyl-CoA, providing substrates for HAT. The increase of histone acetylation locally enhanced immediate early gene transcription, including Egr2, Fos, Nr2f2, Sgk1, and Arc, to benefit neuronal plasticity and memory in many ways. BioMed Central 2019-06-11 /pmc/articles/PMC7398205/ /pubmed/32922914 http://dx.doi.org/10.1186/s41016-019-0162-y Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Zhang, Hao Xiong, Zujian He, Qin Fan, Fan ACSS2-related autophagy has a dual impact on memory |
title | ACSS2-related autophagy has a dual impact on memory |
title_full | ACSS2-related autophagy has a dual impact on memory |
title_fullStr | ACSS2-related autophagy has a dual impact on memory |
title_full_unstemmed | ACSS2-related autophagy has a dual impact on memory |
title_short | ACSS2-related autophagy has a dual impact on memory |
title_sort | acss2-related autophagy has a dual impact on memory |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398205/ https://www.ncbi.nlm.nih.gov/pubmed/32922914 http://dx.doi.org/10.1186/s41016-019-0162-y |
work_keys_str_mv | AT zhanghao acss2relatedautophagyhasadualimpactonmemory AT xiongzujian acss2relatedautophagyhasadualimpactonmemory AT heqin acss2relatedautophagyhasadualimpactonmemory AT fanfan acss2relatedautophagyhasadualimpactonmemory |