Cargando…

The relationship between preference-based health-related quality of life and lifestyle behavior: a cross-sectional study on a community sample of adults who had undergone a health check-up

BACKGROUND: Preference-based Health-Related Quality of Life (HRQL) is one of the most important indicators for calculating QALY (Quality-Adjusted Life Years) in a cost-effectiveness analysis. This study aimed to collect data on healthy individuals’ HRQL based on the preferences of Japanese people wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Noto, Shinichi, Takahashi, Osamu, Kimura, Takeshi, Moriwaki, Kensuke, Masuda, Katsunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398297/
https://www.ncbi.nlm.nih.gov/pubmed/32746837
http://dx.doi.org/10.1186/s12955-020-01518-6
Descripción
Sumario:BACKGROUND: Preference-based Health-Related Quality of Life (HRQL) is one of the most important indicators for calculating QALY (Quality-Adjusted Life Years) in a cost-effectiveness analysis. This study aimed to collect data on healthy individuals’ HRQL based on the preferences of Japanese people who had undergone a comprehensive health check-up, and to examine the influence of relevant factors, such as blood biochemical data and lifestyle behavior. METHODS: We conducted a cross-sectional study targeting people who had undergone a comprehensive health check-up in 2015. Participants were asked to respond to a medical interview sheet. We then examined the utility value, as well as lifestyle habits such as alcohol intake, smoking, and exercise. HRQL was examined using EQ-5D-5L. Using a multiple regression analysis, we examined the influence of related factors, such as lifestyle and biochemical test data. RESULTS: We collected 2037 responses (mean age = 54.98 years; 55.0% female). The average preference-based health-related HRQL was 0.936 ± 0.087. A total of 1167 people (57.2%) responded that they were completely healthy. The biochemical test data that were recognized to correlate with HRQL were hemoglobin, total cholesterol, creatinine, all of which were weak (r = − 0.045–0.113). The results of multiple regression analysis showed that significant facts were: being female, age (≧70 year-old), drinking alcohol (sometimes), activity (very often), and lack of sleep. CONCLUSIONS: The HRQL of participants who had undergone a comprehensive health check-up was generally high, and only declined for those over 70 years of age. It is suggested that preference-based HRQL is related to physical activity, and that decrease of activity and lack of sleep leads to a decrease in HRQL.